

1

A Multigrid Solver for Boundary Value Problems Using
Programmable Graphics Hardware

University of Virginia Technical Report CS-2003-03

Nolan Goodnight* Gregory Lewin† David Luebke* Kevin Skadron*
*Department of Computer Science, †Department of Mechanical & Aerospace Engineering, University of Virginia

Abstract—We present a method for using programmable graphics
hardware to solve a variety of boundary value problems. The
time-evolution of such problems is frequently governed by partial
differential equations, which are used to describe a wide range of
dynamic phenomena including heat transfer and fluid mechanics.
The need to solve these equations efficiently arises in many areas
of computational science. Finite difference methods are commonly
used for solving partial differential equations; we show that this
approach can be mapped onto a modern graphics processor. We
demonstrate an implementation of the multigrid method, a fast
and popular approach to solving boundary value problems, on
two modern graphics architectures. Our initial tests with
available hardware show speedups of roughly 15x compared to
traditional software implementation. This work presents a novel
use of computer hardware and raises the intriguing possibility
that we can make the inexpensive power of modern commodity
graphics hardware accessible to and useful for the simulation
community.

Index Terms—Boundary value problems, partial differential
equations, multigrid method, graphics hardware.

I. INTRODUCTION
The graphics-processing unit (GPU) sold on today’s

commodity video cards has evolved into an extremely
powerful and flexible processor in its own right. The latest
graphics architectures provide tremendous memory bandwidth
and computational horsepower, with fully programmable
vertex and pixel processing units that support vector
operations up to full IEEE single precision [1,4]. High level
languages have emerged to support the new programmability
of the vertex and pixel pipelines [7, 10]. In fact, Purcell et al.
argue that the modern GPU can be thought of as general
stream processor and can perform any computation that can be
mapped to the stream-computing model [11].

We present a technique to use modern graphics hardware
for general numeric computation; specifically, we present a
solver for boundary value problems based on the multigrid
algorithm and implemented on the latest graphics architecture.
In Section II, we present background information on the
multigrid algorithm, modern graphics hardware, and previous
work. Section III describes our implementation; Section IV
describes its extension to arbitrary boundary conditions. In
Section V we present our results, focusing on the specific
problem of heat transfer, and demonstrate order-of-magnitude
speedups over a CPU-only implementation. Finally, we discuss
some advantages and disadvantages of our approach, describe
other possible applications of this solver, and conclude with
some thoughts on future work.

II. BACKGROUND

A. Boundary value problems and the multigrid algorithm
An enormous variety of physical problems require the

solution of boundary value problems (BVPs) of the form:
 u f=L (1)
where L is some operator acting on unknown u with a non-
homogeneous term f. Such problems frequently arise in
scientific and engineering disciplines ranging from heat
transfer and fluid mechanics to vibration theory, quantum
mechanics, and plasma physics. For example, finding steady-
state temperature distribution in a solid of thermal conductivity
k with thermal source S requires solving a Poisson equation

2k u S∇ = − , in which L is the Laplacian operator 2∇ .
In practice most BVPs cannot be solved analytically and so

are discretized onto a grid to produce a set of linear algebraic
equations. Several means exist for solving such sets of
equations including direct elimination, Gauss-Seidel iteration,
conjugate-gradient techniques, and strongly implicit
procedures [9]. One technique that has found wide acceptance
is the multigrid method. Multigrid has proven quite fast for
large BVPs and is fairly straightforward to implement. A full
description of the multigrid method is beyond this paper; see
Press et al. [9] for a good overview. Here we simply
summarize the broad steps or kernels of the algorithm in order
to describe how we map them to the graphics hardware.

The smoothing kernel approximates the solution to (1) as
discretized on a particular grid. The exact smoothing algorithm
will depend on the operator L, which is the Laplacian ∇2 in
our Poisson solver example. The smoothing kernel iteratively
applies a discrete approximation of L.

The progress of the smoothing iterations is measured by
calculating the residual. Reduction of the residual results in
reduction of the error in the solution, and the solution may be
considered sufficiently converged once the residual has been
reduced below a (user-specified) threshold.

However, convergence on a full-resolution grid is generally
too slow, due to long-wavelength errors that are slow to
propagate out of the fine grid. Multigrid circumvents this
problem by recursively using coarser and coarser grids to
approximate corrections to the solution. The restriction kernel
therefore takes the residual from a fine grid to a coarser grid,
where the smoothing kernel is again applied for several
iterations. Afterwards the coarse grid may be restricted to a
still coarser grid, or the correction residual may be pushed
back to a finer grid using the interpolation kernel. Multigrid
methods typically follow a fixed pattern of smoothing,
restriction, and interpolation, then test for convergence and
repeat if necessary.

University of Virginia Technical Report CS-2003-03

2

B. The modern graphics processor
The modern graphics accelerator consists of tightly coupled

vertex and pixel pipelines. The former performs
transformations, lighting effects, and other vertex-related
operations; the latter handles screen space operations and
texturing and has direct access to texture memory, allowing
the result of one computation to be used as input to a
subsequent computation. This and the fact that pixel
processors have enormous throughput—roughly an order of
magnitude greater data throughput than vertex programs [2]—
makes the pixel engine best suited for numerical algorithms.

Until recently, both pipelines were fixed-function, optimized
to perform graphics-specific computations. However, the most
recent generation of GPUs provide considerable
programmability for these pipelines (Figure 1). They also
greatly increase precision, replacing the 8-10 bits previously
available with support for full IEEE single-precision floating
point throughout the pipeline. Purcell et al. [11] argue that
current programmable GPUs can be understood as parallel
stream processors, the two pipelines highly optimized to run a
user-specified program or shader on a stream of vertices or
pixels, respectively. The NV30 architecture supports a fully
orthogonal instruction set optimized for 4-component vector
processing (e.g., RGBA color or XYZW position). This
instruction set is shared by the vertex and pixel processors,
with limitations—for example, the vertex processor cannot
perform texture lookups and the pixel processor does not
support branching. The individual processors have high
resource limitations; for example, a pixel shader can have up
to 1024 instructions.

Programming the GPU consists of writing vertex and pixel
shaders, using either vendor-specific assembly instructions or a
higher-level language, such as the Stanford Real-Time Shading
Language [10] and NVIDIA’s Cg [7], which can be compiled
to an assembly profile. We have implemented our multigrid
solver as a series of pixel shaders, using Cg coupled with an
emulator for the NVIDIA NV30 chip [4], and later as an
assembly pixel program on the ATI Radeon 9700 [1] for
performance measurement (see Section V).

C. Previous work
The tremendous increase in programmability of graphics

chipsets is a recent trend, and relatively little work has been
done so far to exploit that programmability for computation
other than variations of polygon rendering. Purcell et al. cast
ray tracing as a series of pixel programs [10]. Their research
demonstrates the flexibility of the latest graphics hardware, but
still focuses on image generation. Closer in spirit to our work
are approaches to GPU-accelerated physical simulation. For
example, several NVIDIA demos showcase simple physical
simulations modeling cloth, water, and particle system physics
using vertex and pixel shaders [6]. Building on these ideas,
Harris et al. [3] use graphics hardware for visual simulation

using an extension of cellular automata known as coupled-map
lattice. They simulate several fluid processes such as
convection, diffusion, and boiling.

Thompson et al. apply graphics hardware to general-
purpose vector processing [12]. Their programming
framework compiles vector computations to streams of vertex
operations using the 4-vector registers on the vertex processor.
They demonstrate simple implementations of matrix
multiplication and 3-SAT, with considerable speedup. Unlike
their work, which uses the vertex processor, we use the faster,
simpler pixel processor. This lets us feed results of one
computation into the input of another, overcoming a major
drawback faced by Thompson et al.: the need to bring results
off the GPU to the CPU.

The focus of our work has been to create a hardware-
accelerated framework, in the form of a multigrid solver, for
solving boundary-value problems of the form discussed in
Section II.A. This approach is broad, novel, and important. A
fast multigrid solver has tremendously applicability compared
to previous work, enabling acceleration of a whole set of real-
world scientific and engineering problems. These range from
modeling steady-state thermal propagation to implicit time-
stepping techniques for temporal evolution of fluid mechanics.
In addition, our approach involves few assumptions about the
specifics of the governing equations or the structure of the
solution domain.

III. IMPLEMENTATION

A. Overview
We keep all grid data—the current solution, residuals,

source terms, and so on—in fast on-card video memory,
storing the data for each progressively coarser grid as a series
of images. This allows us to use the pixel pipeline, optimized
to perform image processing and texture mapping operations
on billions of pixels per second, for our computations. We also
eliminate the need to transfer large amounts of data from main
memory to and from the graphics card (a common
performance bottleneck). To keep the computation entirely on
the card, we implement all operations—smoothing, residual
calculation, restriction, and interpolation—using pixel shaders
that read from one set of input images (or textures) and write
to an output image.

This approach almost completely decouples the CPU from
the GPU. After downloading the shader code and all data to
the GPU, the CPU merely issues to the GPU the sequence of
shaders to be run, and occasionally checks to see if the
solution has converged yet (details in Section III.C below).
This decoupling allows the GPU to proceed at maximum speed
without waiting for commands from the CPU or for data from
main memory.

B. Relevant graphics hardware features
Our implementation relies on certain recent advances in

graphics architecture:
• Floating point throughout the pipeline. NV30 provides

IEEE 32-bit floating point computation and storage.
• Multi-texturing. Modern cards provide multiple

simultaneous textures, and multiple lookups from each.
• Render-to-texture. This capability enables binding the

rendering output from one shader as a texture for input
to another shader. This avoids copying pixel data from

Figure 1: The modern graphics pipeline.

University of Virginia Technical Report CS-2003-03

3

framebuffer to texture memory, which Harris et al.
found to be a significant performance bottleneck [3].

C. Mapping the multigrid algorithm to hardware
The multigrid algorithm recursively solves a boundary value

problem at several grid resolutions. In our implementation all
computationally intensive steps—successive kernel
applications, implemented as pixel shaders—are handled by
the GPU. Results from one kernel become the input to the next
kernel (Figure 2). In other words, we have implemented the
multigrid algorithm as a series of stream computations
performed entirely in the pixel pipeline, where we use the CPU
only to keep track of the recursion depth and to provide the
initial stream data.

Following this stream processing abstraction, the purpose of
each multigrid shader is to operate on data from multiple input
streams to produce a single output stream. For example, for the
smoothing kernel we discretize and store the operator L from
the boundary value equation (1) as a five-point stencil at every
grid cell (Storing a separate stencil at every cell enables non-
Cartesian grids, such as cylindrical coordinates). Thus the
smoothing kernel combines two data streams, one containing
the discretized operator Lh and the other containing the current
solution Uh. We use texture-mapped polygons to generate
these streams as pixels streaming through the GPU pixel
engine. Using the OpenGL graphics API, for each kernel the
general procedure is as follows:
• Bind the texture maps that contain all necessary data for

the kernel computation.
• Activate a pixel shader, programming the pixel pipeline

to perform that computation on every pixel.
• Render a single quadrilateral with multi-texturing

enabled, sized to cover as many pixels as the resolution
of the current grid.

Using this procedure, we are able to perform all of the
multigrid computations by simply switching the active pixel
program and binding any combination of textures as input data
to the pixel pipeline. Next we discuss the four key multigrid
kernels in detail, using as an example our heat-transfer
problem modeled by a Poisson equation.

1) Smoothing
In the multigrid algorithm, smoothing refers to the process

of approximating the solution to the boundary value equation
(1) at each grid level. The actual implementation will depend
on the operator represented by L; in the case of the Poisson
equation, L is the Laplacian operator 2∇ . The first step of the
smoothing kernel is to apply this operator. The inputs are
simply the current solution U and the five-point discrete
approximation of the Laplacian given by:
 2

1, 1, , 1 , 1 ,4ij i j i j i j i j i jU U U U U U− + − +∇ ≈ + + + − (2)
where i and j are row and column indices into the grid. We
then approximate the next time-step in the simulation using
Jacobi iteration [9], and in doing so factor in the non-
homogeneous term f, which for heat transfer problems is a
spatially varying function of external heat source. Finally, we
apply the necessary boundary conditions, as discussed later in
Section IV. After performing these operations on every pixel,
the output represents a closer approximation to the steady-state
solution.
2) Calculating the residual

At each grid cell, the residual value is calculated by
applying the operator L to the current solution. As the current
solution converges to steady-state, the residuals approach zero.
For the Poisson equation (where L = 2∇), we perform the
residual calculation using a single pixel shader and store the
result in texture memory in preparation for the restriction pass.

We can exploit the occlusion query feature of recent
graphics chips to determine when steady-state has been
reached using the residual calculation. The occlusion query
tests whether any pixels from a given rendering operation were
written to the frame buffer [5]. Every Nth iteration—for some
user-defined N—we activate a pixel shader that compares the
residual at each grid to some threshold value ε, and kill the
pixel (terminating the corresponding SIMD pixel processor) if
the difference is less than zero. If an occlusion query for this
operation returns true, we have found the solution to (1) within
a tolerance ε. By varying the threshold value we can govern
the accuracy, and thus the length, of the simulation.
3) Restricting the residual

If grid Gi represents the ith domain resolution, then Gi+1 is
the next-coarser grid level. We restrict the residual from Gi to
Gi+1 by setting the rendering output resolution to match the
dimensions of grid Gi+1, then activating a pixel shader that re-
samples residual values from Gi using bilinear interpolation
and restricts (or injects) the samples to the coarser grid. In
other words, the restriction pixel shader takes as input two
data streams: a pixel for every grid cell in the Gi+1 domain and
a group of pixels in Gi for every cell in Gi+1. The output
becomes the non-homogeneous term f from (1) for the problem
to be solved on the coarse grid Gi+1.
4) Interpolating the correction

Finding the approximate solution at grid Gi+1 provides a
correction we can interpolate to grid Gi. In this case we set the
output rendering resolution to match the dimensions of Gi; the
active pixel shader linearly interpolates solution values from
one input stream (Gi+1) and adds these to another input stream
(Gi). At each pixel of grid Gi we perform simple modular
arithmetic on the texture coordinates to determine which
samples from Gi+1 to include in the interpolation.

Figure 2: An illustration of two grids in the multigrid algorithm as it is
implemented in graphics hardware. At grid i the smoothing pass is
performed by rendering between two buffers, labeled front and back. We
then restrict the residual to the front buffer for grid i+1 and perform the
same smoothing operations on this lower-resolution grid. The
approximate solution at grid i+1 is interpolated back to higher resolution
grid i and the smoothing continues. By using two buffers at each grid
level, we can bind one buffer as input and use the other buffer as a
rendering target. All arrows between buffers represent render passes.

University of Virginia Technical Report CS-2003-03

4

IV. BOUNDARY CONDITIONS
Fundamental to the process of solving boundary-value

problems for real-world situations is the ability to specify
arbitrarily complex boundary conditions. In our current
hardware implementation, boundary values are treated as a
simple extension to the state-space of the simulation. We have
chosen this approach for its generality and compliance with the
stream-processing utility of the GPU. By treating boundary
conditions in this way, the pixel processor is free to perform
the same computation on every pixel, and we avoid the need to
include boundary-related conditionals in the pixel shader.

For example, our multigrid solver accommodates general
boundary conditions for second-order problems, described by:

 k
k k k k

k

U
U

n
α β γ

∂
+ =

∂
 (3)

where , ,k kα β and kγ are constants evaluated at the kth
boundary position and kU is the kth boundary value. The
second term on the left hand side is the directional derivative
with respect to the normal nk at a given boundary. (3) can be
easily implemented by storing each of the constants in texture
memory. For the derivative term we simply replace the five-
point operator stencil—the discretized operator from (1)—
with a “boundary condition” stencil. We apply all boundary
conditions as part of the smoothing pass; the user can specify a
single texture that contains all boundary condition information.

V. RESULTS
We have run a series of heat transfer simulations using the

multigrid Poisson solver, and compared the numeric results of
our solver both to a reference software implementation on the
CPU and to the analytic solution; in all cases, the GPU
implementation is correct to within floating-point precision.
Our principal target architecture, NVIDIA’s NV30, is
currently available only in software emulation, and no
performance information has been released. To obtain
reasonable performance estimates, we implemented the
multigrid solver in pixel assembly language on the ATI
Radeon 9700. This chip has somewhat less precision (24-bit
floating point) and flexibility than NV30, but is available
today. We achieved roughly 15X speedup for various
parameter settings and grid resolutions (Table 1). All tests
used an AMD Athlon 1600 with 1 GB of system memory and
an ATI Radeon 9700 graphics card [1]. Both the CPU or GPU
solvers are reasonably optimized, and the algorithms are
comparable in memory access and number of computations.

Grid Dimensions CPU iters/sec GPU iters/sec Speedup
256 X 256 pixels 4.7 65.8 14.00
512 X 512 pixels 1.1 17.4 15.82
1024 X 1024 pixels 0.3 4.1 13.67

Table 1: Speedup measurements for a multigrid heat transfer simulation
using three grids and five smoothing iterations per pass.

VI. DISCUSSION AND FUTURE WORK
We have implemented a general multigrid solver on the

NV30 architecture, demonstrating a specific and broadly
useful application of stream computing using graphics
hardware. We achieve high performance by keeping all data—
current solution, residuals, source terms, operators, and
boundary information—on the graphics card stored as textures,
and by performing calculations entirely in the pixel pipeline,

using pixel shaders to implement the multigrid kernels:
smoothing, residual, restriction, and interpolation. In general
we can use our framework to solve a variety of boundary value
problems; as a concrete example, we solve the Poisson
equation, using our solver to model classic heat transfer. Our
solver outperforms a comparable CPU implementation by a
factor of about 15, demonstrating the computational power that
can be harnessed by efficient use of graphics hardware.

A. Limitations
While the advent of 32-bit floating point throughout the

modern GPU pipeline is a leap forward, many physical
simulations require even greater precision. We still need to
characterize whether workarounds could be developed for
higher precision. Another limitation is the size of video
memory, limited to 256 MB on current boards. Texture
compression may help mitigate this problem.

B. Avenues for future work
We plan to implement more complex (non-Cartesian) grid

structures, to extend the current multigrid implementation to
support 3D grids, and to simulate more complicated physical
phenomena. We are confident that we can accelerate a wide
range of simulations that require fast and efficient solutions to
boundary-value problems, such as fluid mechanics models and
computer graphics tone-mapping operators. Our preliminary
work raises the tantalizing possibility that scientists may be
able to accelerate their simulation by an order of magnitude by
investing $300 in a commodity graphics card. We are also
interested in parallelizing the multigrid computation, perhaps
augmenting existing computational clusters with inexpensive
graphics cards to provide huge speedups on some problems.
Finally, we are exploring an even more general framework for
expressing numeric methods (not just multigrid) as streaming
computations for execution using graphics hardware,
especially the massive parallelism of the pixel engine.

REFERENCES
[1] ATI Corporation. 2002. Radeon 9700 Pro.

http://mirror.ati.com/products/pc/radeon9700pro/
[2] Carr, N. A., Hall, J. D., Hart, J. C. The Ray Engine. In Proc. of 2002

SIGGRAPH / Eurographics Workshop on Graphics Hardware, 2002.
[3] Harris, M. J., Coombe, G., Scheuermann, T., Lastra, A. Physically-

Based Visual Simulation on Graphics Hardware, In Proc. of 2002
SIGGRAPH / Eurographics Workshop on Graphics Hardware, 2002.

[4] NVIDIA Corporation. 2002. GeForce FX.
http://www.nvidia.com/view.asp?PAGE=geforcefx

[5] NVIDIA Corporation. OpenGL Extension Specifications. 2002
[6] NVIDIA Corporation. Demos available at http://developer.nvidia.com
[7] NVIDIA Corporation. Cg Language Specification. 2002.
[8] OpenGL Extension Specifications

http://www.opengl.org/developers/documentation/specs.html
[9] Press, W. H., Tuekolsky, S. A., Vetterling, W. T., Flannery, B. P.

Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.
Cambridge University Press, 1992.

[10] Proudfoot, K., Mark, W., Tzvetkov, S., Hanrahan, P. A Real-time
Procedural Shading Language for Programmable Graphics Hardware. In
Proc. of SIGGRAPH 2001.

[11] Purcell, T. J., Buck, I., Mark, W. R. and Hanrahan, P. Ray Tracing on
Programmable Graphics Hardware. In Proc. of SIGGRAPH 2002.

[12] Thompson, C. J., Hahn, S., Oskin, M., Using Modern Graphics
Architectures for General-Purpose Computing: A Framework and
Analysis, In Proc. of ACM/IEEE MICRO-35, Nov. 2002

