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Abstract—We present a method for using programmable graphics 
hardware to solve a variety of boundary value problems. The 
time-evolution of such problems is frequently governed by partial 
differential equations, which are used to describe a wide range of 
dynamic phenomena including heat transfer and fluid mechanics. 
The need to solve these equations efficiently arises in many areas 
of computational science. Finite difference methods are commonly 
used for solving partial differential equations; we show that this 
approach can be mapped onto a modern graphics processor. We 
demonstrate an implementation of the multigrid method, a fast 
and popular approach to solving boundary value problems, on 
two modern graphics architectures. Our initial tests with 
available hardware show speedups of roughly 15x compared to 
traditional software implementation. This work presents a novel 
use of computer hardware and raises the intriguing possibility 
that we can make the inexpensive power of modern commodity 
graphics hardware accessible to and useful for the simulation 
community. 

Index Terms—Boundary value problems, partial differential 
equations, multigrid method, graphics hardware. 

I. INTRODUCTION 
The graphics-processing unit (GPU) sold on today’s 

commodity video cards has evolved into an extremely 
powerful and flexible processor in its own right. The latest 
graphics architectures provide tremendous memory bandwidth 
and computational horsepower, with fully programmable 
vertex and pixel processing units that support vector 
operations up to full IEEE single precision [1,4]. High level 
languages have emerged to support the new programmability 
of the vertex and pixel pipelines [7, 10]. In fact, Purcell et al. 
argue that the modern GPU can be thought of as general 
stream processor and can perform any computation that can be 
mapped to the stream-computing model [11]. 

We present a technique to use modern graphics hardware 
for general numeric computation; specifically, we present a 
solver for boundary value problems based on the multigrid 
algorithm and implemented on the latest graphics architecture. 
In Section II, we present background information on the 
multigrid algorithm, modern graphics hardware, and previous 
work. Section III describes our implementation; Section IV 
describes its extension to arbitrary boundary conditions. In 
Section V we present our results, focusing on the specific 
problem of heat transfer, and demonstrate order-of-magnitude 
speedups over a CPU-only implementation. Finally, we discuss 
some advantages and disadvantages of our approach, describe 
other possible applications of this solver, and conclude with 
some thoughts on future work. 

II. BACKGROUND 

A. Boundary value problems and the multigrid algorithm 
An enormous variety of physical problems require the 

solution of boundary value problems (BVPs) of the form:  
 u f=L  (1) 
where L is some operator acting on unknown u with a non-
homogeneous term f. Such problems frequently arise in 
scientific and engineering disciplines ranging from heat 
transfer and fluid mechanics to vibration theory, quantum 
mechanics, and plasma physics. For example, finding steady-
state temperature distribution in a solid of thermal conductivity 
k with thermal source S requires solving a Poisson equation 

2k u S∇ = − , in which L is the Laplacian operator 2∇ . 
In practice most BVPs cannot be solved analytically and so 

are discretized onto a grid to produce a set of linear algebraic 
equations. Several means exist for solving such sets of 
equations including direct elimination, Gauss-Seidel iteration, 
conjugate-gradient techniques, and strongly implicit 
procedures  [9]. One technique that has found wide acceptance 
is the multigrid method. Multigrid has proven quite fast for 
large BVPs and is fairly straightforward to implement. A full 
description of the multigrid method is beyond this paper; see 
Press et al. [9] for a good overview.  Here we simply 
summarize the broad steps or kernels of the algorithm in order 
to describe how we map them to the graphics hardware.  

The smoothing kernel approximates the solution to (1) as 
discretized on a particular grid. The exact smoothing algorithm 
will depend on the operator L, which is the Laplacian ∇2 in 
our Poisson solver example. The smoothing kernel iteratively 
applies a discrete approximation of L.  

The progress of the smoothing iterations is measured by 
calculating the residual. Reduction of the residual results in 
reduction of the error in the solution, and the solution may be 
considered sufficiently converged once the residual has been 
reduced below a (user-specified) threshold.  

However, convergence on a full-resolution grid is generally 
too slow, due to long-wavelength errors that are slow to 
propagate out of the fine grid. Multigrid circumvents this 
problem by recursively using coarser and coarser grids to 
approximate corrections to the solution. The restriction kernel 
therefore takes the residual from a fine grid to a coarser grid, 
where the smoothing kernel is again applied for several 
iterations. Afterwards the coarse grid may be restricted to a 
still coarser grid, or the correction residual may be pushed 
back to a finer grid using the interpolation kernel. Multigrid 
methods typically follow a fixed pattern of smoothing, 
restriction, and interpolation, then test for convergence and 
repeat if necessary. 
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B. The modern graphics processor 
The modern graphics accelerator consists of tightly coupled 

vertex and pixel pipelines. The former performs 
transformations, lighting effects, and other vertex-related 
operations; the latter handles screen space operations and 
texturing and has direct access to texture memory, allowing 
the result of one computation to be used as input to a 
subsequent computation.  This and the fact that pixel 
processors have enormous throughput—roughly an order of 
magnitude greater data throughput than vertex programs [2]—
makes the pixel engine best suited for numerical algorithms. 

Until recently, both pipelines were fixed-function, optimized 
to perform graphics-specific computations. However, the most 
recent generation of GPUs provide considerable 
programmability for these pipelines (Figure 1). They also 
greatly increase precision, replacing the 8-10 bits previously 
available with support for full IEEE single-precision floating 
point throughout the pipeline. Purcell et al. [11] argue that 
current programmable GPUs can be understood as parallel 
stream processors, the two pipelines highly optimized to run a 
user-specified program or shader on a stream of vertices or 
pixels, respectively. The NV30 architecture supports a fully 
orthogonal instruction set optimized for 4-component vector 
processing (e.g., RGBA color or XYZW position). This 
instruction set is shared by the vertex and pixel processors, 
with limitations—for example, the vertex processor cannot 
perform texture lookups and the pixel processor does not 
support branching. The individual processors have high 
resource limitations; for example, a pixel shader can have up 
to 1024 instructions. 

Programming the GPU consists of writing vertex and pixel 
shaders, using either vendor-specific assembly instructions or a 
higher-level language, such as the Stanford Real-Time Shading 
Language [10] and NVIDIA’s Cg [7], which can be compiled 
to an assembly profile. We have implemented our multigrid 
solver as a series of pixel shaders, using Cg coupled with an 
emulator for the NVIDIA NV30 chip [4], and later as an 
assembly pixel program on the ATI Radeon 9700 [1] for 
performance measurement (see Section V).  

C. Previous work 
The tremendous increase in programmability of graphics 

chipsets is a recent trend, and relatively little work has been 
done so far to exploit that programmability for computation 
other than variations of polygon rendering. Purcell et al. cast 
ray tracing as a series of pixel programs [10]. Their research 
demonstrates the flexibility of the latest graphics hardware, but 
still focuses on image generation. Closer in spirit to our work 
are approaches to GPU-accelerated physical simulation. For 
example, several NVIDIA demos showcase simple physical 
simulations modeling cloth, water, and particle system physics 
using vertex and pixel shaders [6]. Building on these ideas, 
Harris et al. [3] use graphics hardware for visual simulation 

using an extension of cellular automata known as coupled-map 
lattice. They simulate several fluid processes such as 
convection, diffusion, and boiling.  

Thompson et al. apply graphics hardware to general-
purpose vector processing [12]. Their programming 
framework compiles vector computations to streams of vertex 
operations using the 4-vector registers on the vertex processor. 
They demonstrate simple implementations of matrix 
multiplication and 3-SAT, with considerable speedup. Unlike 
their work, which uses the vertex processor, we use the faster, 
simpler pixel processor. This lets us feed results of one 
computation into the input of another, overcoming a major 
drawback faced by Thompson et al.: the need to bring results 
off the GPU to the CPU.  

The focus of our work has been to create a hardware-
accelerated framework, in the form of a multigrid solver, for 
solving boundary-value problems of the form discussed in 
Section II.A. This approach is broad, novel, and important. A 
fast multigrid solver has tremendously applicability compared 
to previous work, enabling acceleration of a whole set of real-
world scientific and engineering problems. These range from 
modeling steady-state thermal propagation to implicit time-
stepping techniques for temporal evolution of fluid mechanics. 
In addition, our approach involves few assumptions about the 
specifics of the governing equations or the structure of the 
solution domain.   

III. IMPLEMENTATION 

A. Overview 
We keep all grid data—the current solution, residuals, 

source terms, and so on—in fast on-card video memory, 
storing the data for each progressively coarser grid as a series 
of images. This allows us to use the pixel pipeline, optimized 
to perform image processing and texture mapping operations 
on billions of pixels per second, for our computations. We also 
eliminate the need to transfer large amounts of data from main 
memory to and from the graphics card (a common 
performance bottleneck). To keep the computation entirely on 
the card, we implement all operations—smoothing, residual 
calculation, restriction, and interpolation—using pixel shaders 
that read from one set of input images (or textures) and write 
to an output image.  

This approach almost completely decouples the CPU from 
the GPU. After downloading the shader code and all data to 
the GPU, the CPU merely issues to the GPU the sequence of 
shaders to be run, and occasionally checks to see if the 
solution has converged yet (details in Section III.C below). 
This decoupling allows the GPU to proceed at maximum speed 
without waiting for commands from the CPU or for data from 
main memory. 

B. Relevant graphics hardware features 
Our implementation relies on certain recent advances in 

graphics architecture: 
• Floating point throughout the pipeline. NV30 provides 

IEEE 32-bit floating point computation and storage. 
• Multi-texturing. Modern cards provide multiple 

simultaneous textures, and multiple lookups from each. 
• Render-to-texture. This capability enables binding the 

rendering output from one shader as a texture for input 
to another shader. This avoids copying pixel data from 

Figure 1: The modern graphics pipeline. 
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framebuffer to texture memory, which Harris et al. 
found to be a significant performance bottleneck [3]. 

C. Mapping the multigrid algorithm to hardware 
The multigrid algorithm recursively solves a boundary value 

problem at several grid resolutions. In our implementation all 
computationally intensive steps—successive kernel 
applications, implemented as pixel shaders—are handled by 
the GPU. Results from one kernel become the input to the next 
kernel (Figure 2). In other words, we have implemented the 
multigrid algorithm as a series of stream computations 
performed entirely in the pixel pipeline, where we use the CPU 
only to keep track of the recursion depth and to provide the 
initial stream data. 

Following this stream processing abstraction, the purpose of 
each multigrid shader is to operate on data from multiple input 
streams to produce a single output stream. For example, for the 
smoothing kernel we discretize and store the operator L from 
the boundary value equation (1) as a five-point stencil at every 
grid cell (Storing a separate stencil at every cell enables non-
Cartesian grids, such as cylindrical coordinates). Thus the 
smoothing kernel combines two data streams, one containing 
the discretized operator Lh and the other containing the current 
solution Uh. We use texture-mapped polygons to generate 
these streams as pixels streaming through the GPU pixel 
engine. Using the OpenGL graphics API, for each kernel the 
general procedure is as follows:   
• Bind the texture maps that contain all necessary data for 

the kernel computation. 
• Activate a pixel shader, programming the pixel pipeline 

to perform that computation on every pixel. 
• Render a single quadrilateral with multi-texturing 

enabled, sized to cover as many pixels as the resolution 
of the current grid. 

Using this procedure, we are able to perform all of the 
multigrid computations by simply switching the active pixel 
program and binding any combination of textures as input data 
to the pixel pipeline. Next we discuss the four key multigrid 
kernels in detail, using as an example our heat-transfer 
problem modeled by a Poisson equation. 

1) Smoothing 
In the multigrid algorithm, smoothing refers to the process 

of approximating the solution to the boundary value equation 
(1) at each grid level. The actual implementation will depend 
on the operator represented by L; in the case of the Poisson 
equation, L is the Laplacian operator 2∇ . The first step of the 
smoothing kernel is to apply this operator. The inputs are 
simply the current solution U and the five-point discrete 
approximation of the Laplacian given by:  
 2

1, 1, , 1 , 1 ,4ij i j i j i j i j i jU U U U U U− + − +∇ ≈ + + + −  (2) 
where i and j are row and column indices into the grid. We 
then approximate the next time-step in the simulation using 
Jacobi iteration [9], and in doing so factor in the non-
homogeneous term f, which for heat transfer problems is a 
spatially varying function of external heat source. Finally, we 
apply the necessary boundary conditions, as discussed later in 
Section IV. After performing these operations on every pixel, 
the output represents a closer approximation to the steady-state 
solution.  
2) Calculating the residual 

At each grid cell, the residual value is calculated by 
applying the operator L to the current solution. As the current 
solution converges to steady-state, the residuals approach zero. 
For the Poisson equation (where L = 2∇ ), we perform the 
residual calculation using a single pixel shader and store the 
result in texture memory in preparation for the restriction pass. 

We can exploit the occlusion query feature of recent 
graphics chips to determine when steady-state has been 
reached using the residual calculation. The occlusion query 
tests whether any pixels from a given rendering operation were 
written to the frame buffer [5]. Every Nth iteration—for some 
user-defined N—we activate a pixel shader that compares the 
residual at each grid to some threshold value ε, and kill the 
pixel (terminating the corresponding SIMD pixel processor) if 
the difference is less than zero. If an occlusion query for this 
operation returns true, we have found the solution to (1) within 
a tolerance ε. By varying the threshold value we can govern 
the accuracy, and thus the length, of the simulation.  
3) Restricting the residual 

If grid Gi represents the ith domain resolution, then Gi+1 is 
the next-coarser grid level. We restrict the residual from Gi to 
Gi+1 by setting the rendering output resolution to match the 
dimensions of grid Gi+1, then activating a pixel shader that re-
samples residual values from Gi using bilinear interpolation 
and restricts (or injects) the samples to the coarser grid. In 
other words, the restriction pixel shader takes as input two 
data streams: a pixel for every grid cell in the Gi+1 domain and 
a group of pixels in Gi for every cell in Gi+1. The output 
becomes the non-homogeneous term f from (1) for the problem 
to be solved on the coarse grid Gi+1.  
4) Interpolating the correction 

Finding the approximate solution at grid Gi+1 provides a 
correction we can interpolate to grid Gi. In this case we set the 
output rendering resolution to match the dimensions of Gi; the 
active pixel shader linearly interpolates solution values from 
one input stream (Gi+1) and adds these to another input stream 
(Gi). At each pixel of grid Gi we perform simple modular 
arithmetic on the texture coordinates to determine which 
samples from Gi+1 to include in the interpolation.  

Figure 2: An illustration of two grids in the multigrid algorithm as it is 
implemented in graphics hardware. At grid i the smoothing pass is 
performed by rendering between two buffers, labeled front and back. We 
then restrict the residual to the front buffer for grid i+1 and perform the 
same smoothing operations on this lower-resolution grid. The 
approximate solution at grid i+1 is interpolated back to higher resolution 
grid i and the smoothing continues. By using two buffers at each grid 
level, we can bind one buffer as input and use the other buffer as a 
rendering target. All arrows between buffers represent render passes. 
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IV. BOUNDARY CONDITIONS  
Fundamental to the process of solving boundary-value 

problems for real-world situations is the ability to specify 
arbitrarily complex boundary conditions. In our current 
hardware implementation, boundary values are treated as a 
simple extension to the state-space of the simulation. We have 
chosen this approach for its generality and compliance with the 
stream-processing utility of the GPU. By treating boundary 
conditions in this way, the pixel processor is free to perform 
the same computation on every pixel, and we avoid the need to 
include boundary-related conditionals in the pixel shader.  

For example, our multigrid solver accommodates general 
boundary conditions for second-order problems, described by: 

 k
k k k k

k

U
U

n
α β γ

∂
+ =

∂
 (3) 

where , ,k kα β and kγ are constants evaluated at the kth 
boundary position and kU  is the kth boundary value. The 
second term on the left hand side is the directional derivative 
with respect to the normal nk at a given boundary. (3) can be 
easily implemented by storing each of the constants in texture 
memory. For the derivative term we simply replace the five-
point operator stencil—the discretized operator from (1)—
with a “boundary condition” stencil. We apply all boundary 
conditions as part of the smoothing pass; the user can specify a 
single texture that contains all boundary condition information.  

V. RESULTS 
We have run a series of heat transfer simulations using the 

multigrid Poisson solver, and compared the numeric results of 
our solver both to a reference software implementation on the 
CPU and to the analytic solution; in all cases, the GPU 
implementation is correct to within floating-point precision. 
Our principal target architecture, NVIDIA’s NV30, is 
currently available only in software emulation, and no 
performance information has been released. To obtain 
reasonable performance estimates, we implemented the 
multigrid solver in pixel assembly language on the ATI 
Radeon 9700. This chip has somewhat less precision (24-bit 
floating point) and flexibility than NV30, but is available 
today. We achieved roughly 15X speedup for various 
parameter settings and grid resolutions (Table 1). All tests 
used an AMD Athlon 1600 with 1 GB of system memory and 
an ATI Radeon 9700 graphics card [1].  Both the CPU or GPU 
solvers are reasonably optimized, and the algorithms are 
comparable in memory access and number of computations. 

Grid Dimensions CPU iters/sec GPU iters/sec Speedup 
256 X 256 pixels 4.7 65.8 14.00 
512 X 512 pixels 1.1 17.4 15.82 
1024 X 1024 pixels 0.3 4.1 13.67 

Table 1: Speedup measurements for a multigrid heat transfer simulation 
using three grids and five smoothing iterations per pass.  

VI. DISCUSSION AND FUTURE WORK 
We have implemented a general multigrid solver on the 

NV30 architecture, demonstrating a specific and broadly 
useful application of stream computing using graphics 
hardware. We achieve high performance by keeping all data—
current solution, residuals, source terms, operators, and 
boundary information—on the graphics card stored as textures, 
and by performing calculations entirely in the pixel pipeline, 

using pixel shaders to implement the multigrid kernels: 
smoothing, residual, restriction, and interpolation. In general 
we can use our framework to solve a variety of boundary value 
problems; as a concrete example, we solve the Poisson 
equation, using our solver to model classic heat transfer. Our 
solver outperforms a comparable CPU implementation by a 
factor of about 15, demonstrating the computational power that 
can be harnessed by efficient use of graphics hardware.  

A. Limitations 
While the advent of 32-bit floating point throughout the 

modern GPU pipeline is a leap forward, many physical 
simulations require even greater precision. We still need to 
characterize whether workarounds could be developed for 
higher precision. Another limitation is the size of video 
memory, limited to 256 MB on current boards. Texture 
compression may help mitigate this problem. 

B. Avenues for future work 
We plan to implement more complex (non-Cartesian) grid 

structures, to extend the current multigrid implementation to 
support 3D grids, and to simulate more complicated physical 
phenomena. We are confident that we can accelerate a wide 
range of simulations that require fast and efficient solutions to 
boundary-value problems, such as fluid mechanics models and 
computer graphics tone-mapping operators. Our preliminary 
work raises the tantalizing possibility that scientists may be 
able to accelerate their simulation by an order of magnitude by 
investing $300 in a commodity graphics card. We are also 
interested in parallelizing the multigrid computation, perhaps 
augmenting existing computational clusters with inexpensive 
graphics cards to provide huge speedups on some problems. 
Finally, we are exploring an even more general framework for 
expressing numeric methods (not just multigrid) as streaming 
computations for execution using graphics hardware, 
especially the massive parallelism of the pixel engine. 
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