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ABSTRACT

View-dependent simplification (VDS)is a novel polygonal simplification algorithm

uniquely suited to the interactive visualization of very large-scale CAD datasets. VDS

adjusts the simplification continually according to view-dependent parameters such as the

viewpoint position and orientation. As a result, objects can span several levels of detail,

degrading smoothly from high fidelity where necessary to low fidelity where possible. VDS

is also global, able to process the entire database without first decomposing the environment

into individual objects. The resulting system enables interactive display of very complex

polygonal CAD models consisting of thousands of parts and millions of polygons. VDS

supports various preprocessing algorithms and various view-dependent criteria, providing a

general framework for dynamic view-dependent simplification.
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1 INTRODUCTION

Interactive visualization of very large-scale CAD models is an increasingly crucial

problem. More and more enterprises and industries are embracing full-system CAD

processes, producing and employing CAD models of unprecedented detail and completeness.

These models span the spectrum of products from submarines to power plants, from airplanes

to offshore oilrigs. Such large-scale CAD databases can serve as a single unified resource for

simulation and design, cutting costs, streamlining the design process, and speeding up

production. Interactive computer graphics is an integral component of the full-system CAD

process, enabling the design, visualization, and manipulation of these datasets. Despite

tremendous strides in computer graphics hardware, however, the growth in complexity of

large-scale models continues to outstrip our capability to render them interactively. When

converted to polygonal form for interactive rendering, today’s large-scale models easily

reach 100 million polygons, two to three orders of magnitude beyond what a high-end

commercial graphics platform can render interactively. Tomorrow’s models will

undoubtedly measure billions of polygons. To achieve interactive rendering rates on such

large-scale datasets clearly requires some algorithmic means of managing geometric

complexity.

Polygonal simplificationprovides a powerful tool for managing this complexity. These

techniques simplify the polygonal geometry of small, distant, or otherwise unimportant

portions of the model, reducing the rendering cost without a significant loss of visual detail.

This article presents a novel polygonal simplification approach uniquely suited to interactive

rendering of very large-scale CAD databases.

1.1 Traditional Polygonal Simplification

Polygonal simplification is at once a very current and a very old topic in computer

graphics. As early as 1976 James Clark described the benefits of representing objects within

a scene at several resolutions, and flight simulators have long used hand-crafted multi-

resolution models of airplanes to guarantee a constant frame rate [1,3]. Recent years have

seen a flurry of research into generating such multi-resolution representations of objects

automatically by simplifying the polygonal geometry of the object. Figure 1 illustrates



traditional polygonal simplification. Multiple versions of each object are created at

progressively coarserlevels of detailor LODs in a preprocess. At run time the system picks

which LOD will represent the object based on criteria such as distance from the viewer.
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Figure 1: The traditional approach to polygonal simplification creates multiple levels of detail (LODs) of
each object in a preprocess, and picks an LOD at run time based on distance.

1.2 Motivation for a Different Approach

This article describes an algorithm conceived for very large-scale CAD databases, a class

of models for which earlier simplification methods often prove inadequate. Several features

of such models make simplification a difficult task. To begin with, large-scale CAD models

are by their nature handcrafted, often by many designers with different styles and levels of

expertise. As a result, the models tend to be messy, often containing topological

degeneracies of every sort. The sheer complexity of these models can also be daunting.

Massive models consisting of thousands of parts and millions of polygons are not

uncommon. Such massive CAD models often represent entire scenes rather than objects, and

typically exhibit a high dynamic range, containing structural elements as large as the model

as well as small, complex parts and assemblies.

An ideal polygonal simplification algorithm for large-scale CAD models should possess a

few key attributes. Such an algorithm should be:

Fast. Many traditional algorithms are quite slow, taking minutes or even hours to create

LODs for a complex object. For models containing thousands of parts and millions of

polygons, creating LODs becomes a batch process that can take hours or days to complete.



Depending on the application, such long preprocessing times may be a slight inconvenience

or a fundamental handicap. In a design-review setting, for instance, CAD users may want to

visualize their revisions in the context of the entire model several times a day. Preprocessing

times of hours prevent the rapid turnaround desirable in this scenario.

Capable of topology reduction. Most traditional LOD algorithms both require and

preserve manifold topology in the polygonal mesh. Requiring clean mesh topology hinders

the usefulness of such algorithms on handcrafted CAD models, which as noted above often

contain topological degeneracies. In addition, preserving mesh topology implies preserving

the overall genus, which as Figure 2 shows, can limit the amount of simplification possible.

Capable of drastic simplification. Visualizing truly large-scale CAD datasets requires

reducing the polygonal complexity of those datasets by three to four orders of magnitude.

Traditional methods work on a per-object basis, creating separate levels of detail for each

object in the model. As the next sections argue, this limits the amount of drastic

simplification possible.

(a) 4,736 triangles, 21 holes (b) 1,006 triangles, 21 holes (c) 46 triangles, 1 hole

Figure 2: Preserving genus limits drastic simplification. The original model of a brake rotor (a) is shown
simplified with a topology-preserving algorithm (b) and a topology-modifying algorithm (c).

Rotor model courtesy Alpha_1 Project, University of Utah.

1.3 Drastic Simplification: the Problem With Large Objects

Creating multiple LODs per object is useless for very large objects. Such an object—for

example, the terrain landform in an civil engineering project, or the hull of a ship in maritime

CAD—presents a fundamental problem: parts of the object will always be near the viewer,

while other parts will always be distant. If the object contains many polygons, using a highly

detailed LOD would mean high fidelity but low frame rates and jerky motion; using a low



detail would provide smooth motion but terrible fidelity. The usual solution is to break up

large objects by hand into smaller objects that can be simplified separately. This can entail a

great deal of work, however, and gives rise to the problem ofcracksbetween adjacent

objects simplified to different levels of detail.

The solution presented here involvesview-dependent simplification, in which the level of

detail varies across the object according to interactive viewing parameters such as viewer

position and orientation. The terrain landform and ship hull present no problem to a view-

dependent simplification algorithm because only the portions of the object near the viewpoint

need to be rendered in high detail. The bulk of the object can still be simplified drastically,

rescuing frame rates while preserving visual fidelity.

1.4 Drastic Simplification: the Problem With Small Objects

Complex assemblies of many small objects present another problem for traditional per-

object LOD. The diesel engine model shown in Figure 3, contains over two hundred small

parts (and at that is not particularly detailed). Assume an excellent LOD algorithm, which

can reduce with good fidelity each of these parts to a single cube: the entire assembly still

requires over 2,400 triangles to render. From a distance, the whole engine may cover only a

few pixels on the viewer’s screen. In this situation a single, fifty-polygon, roughly engine-

shaped block makes a better approximation than two hundred small cubes.

Our solution is to use aglobal simplificationalgorithm that treats the entire scene rather

than individual objects within the scene. With knowledge about the entire scene, the

algorithm can decide when to start combining the various parts of the diesel engine. At a low

enough level of detail, the whole engine (and perhaps nearby portions of the walls and floor)

can be merged and represented by that fifty-polygon block. Note that the idea of global

simplification dovetails nicely with a view-dependent approach. Since view-dependence

allows different portions of an object to be represented at different levels of detail,the entire

scene can be treated as a single all-inclusive object for view-dependent simplification.

These points are important and bear repeating: for drastic simplification using per-object

LOD algorithms, large objects must be subdivided and small objects must be combined.

Doing this manually can mean a great deal of work. A global, view-dependent algorithm is



better suited to drastic simplification, and thus better suited for very large-scale CAD models,

than the traditional approach of creating separate LODs for each object.

Figure 3: A diesel engine model with over 200 parts.
Courtesy Electric Boat Division, General Dynamics Corp.

1.5 The VDS algorithm

These considerations led to the algorithm presented in this article, called simplyview-

dependent simplificationor VDS. VDS provides a framework for polygonal simplification

via vertex merging. This operation, in which several polygon vertices are collapsed together

into a single vertex, provides the fundamental mechanism for removing polygonal detail.

Merging vertices that share an edge of a triangle makes that triangle redundant, allowing it to

be removed. Note the use oftriangle rather thanpolygon. The constant size and guaranteed

planarity of triangles make them preferable to generic polygons, and like most simplification

algorithms, VDS assumes that polygonal models have been fully triangulated.

VDS was designed explicitly to address the particular demands of large-scale CAD

visualization. The algorithm permits global simplification, with a single large data structure

comprising (if the user so desires) the entire model. This structure is thevertex tree, a

hierarchy of vertex merge operations that encodes a continuum of possible levels of detail

across the whole model. Applying a node’s vertex merge operation collapses all of the

vertices within the node together to a single vertex, eliminating triangles whose corners have

been collapsed together. This is calledfolding the node. Likewise, a node may beunfolded

by splitting that single vertex into the vertices of the node’s children. Triangles filtered out

when the node was folded become visible again when the node is unfolded, increasing the



triangle count. Figure 4 illustrates a simple two-dimensional example mesh and vertex tree,

along with a sequence of folding operations.

Figure 4: A sequence of fold operations. Folding each node removes some triangles from the scene,
reducing the scene to a single triangle and finally to the root nodeR.



Note that the vertex tree contains information only about the vertices and triangles of the

model. The algorithm makes no assumptions about the connectivity of those primitives. In

particular, the triangles are not assumed to form a manifold mesh or approximate a smooth

surface. This is another important feature of the VDS framework: because the simplification

operates on the level of triangles and vertices rather than meshes and surfaces, manifold

topology is not required and need not be preserved.

The entire system is dynamic and view-dependent. Nodes to be folded or unfolded are

continually chosen at run-time based according to user-specified criteria. For example, a

common criterion is to set a threshold on projected node screen size. In this mode, the user

sets a screenspace-size threshold—say two pixels—before flying the viewpoint interactively

around the model. The screenspace extent of each node is monitored: as the viewpoint shifts,

certain nodes in the vertex tree will shrink in apparent size, falling below the two-pixel

threshold. These nodes will be folded and redundant triangles removed from the scene.

Other nodes will increase in apparent size and will be unfolded into their constituent child

nodes, introducing new vertices and new triangles into the display list. Adjusting the

threshold lets the user interactively control the degree of simplification and select the right

balance of fidelity and performance.

Other criteria can be used to drive the system; VDS is less a particular algorithm than a

general framework from which algorithms can be constructed. The only essential invariants

of the VDSlib framework are the vertex tree and its associated methods (e.g., folding and

unfolding nodes). Decisions such as how the vertex tree is constructed and which view-

dependent criteria are used to fold and unfold nodes flesh out the framework into a specific

algorithm.

2 STRUCTURES AND M ETHODS

2.1 The Vertex Tree

The VDS vertex tree spans the entire model, organizing every vertex of every polygon

into one global hierarchy encoding all simplifications VDS can produce. Leaf nodes each

represent a single vertex of the original model; internal nodes represent the merging of

multiple vertices from the original model into a single vertex called theproxy. A proxy is



associated with each node in the vertex tree. We say a nodeN supportsa vertexV of the

original model if the leaf node representingV is a descendent ofN. Each node in the vertex

tree, then, supports a subset of the vertices in the original model; the root node supports every

vertex of the entire model. A node supports a triangleT of the original model if it supports

one or more of the vertices that formT’s corners.

Folding a node merges the vertices supported by the node into its proxy, andunfoldinga

node reverses the process. To define these terms more carefully, assume for simplicity that a

node’s children must all be folded before the node can be folded (since those children can

first be folded recursively if necessary, this assumption does not limit the power of the fold

operation). This requirement reduces the fold process from merging all vertices supported by

a node to merging the proxies of that node’s children. Similarly, unfolding a node assumes

that the node’s parent is unfolded, and splits a node’s representative vertex into just the few

representative vertices of the node’s folded children. Defined this way, fold and unfold are

local operations that make only incremental changes to the vertex tree.

Folding and unfolding a node always affects certain triangles. One set of triangles, called

the node’s relevant triangles orreltris, will change in shape as a corner shifts during fold and

unfold operations. Another set of triangles, called the node’ssubtris, will disappear when the

node is folded and reappear when the node is unfolded (Figure 5). Since reltris and subtris

do not depend on the state of other nodes in the vertex tree, they can be computed offline and

accessed very quickly at runtime.1 This is the key observation behind VDS.

1 In fact, calculating reltris can be postponed until run-time or avoided altogether; these

optimizations are discussed later.



(a) Nodes 1, 2, 7 merge to form A (b) The local vertex tree (c) Reltris and subtris of node A

Figure 5: Reltris and subtris of a node in the vertex tree. The highlighted
node A represents the clustering of nodes 1, 2, and 7.

Unfolded nodes are labeledactive; folded nodes are labeledinactive. During operation

the active nodes constitute a cut of the vertex tree, rooted at the root node, called theactive

tree. Folded nodes with active parents are a special case; these nodes form the boundary of

the active tree and are labeledboundary(Figure 6). Since the location of the boundary nodes

determines which vertices in the original model have been collapsed together, the path of the

boundary nodes across the vertex tree completely determines the current simplification.

Notice that by definition, only boundary nodes can be unfolded and only active nodes whose

children are all boundary nodes can be folded.



Figure 6: The vertex tree, active tree, and boundary nodes.

Each node in the vertex tree includes the basic structure described below; explanations of

the individual fields follow.

struct Node {
Int depth ; // depth of the node in vertex tree
NodeStatus label ; // status: active, boundary, or inactive
Coordinate proxy ; // node’s representative vertex
BoundingVol bound ; // bounding volume of all tris supported
Node * parent ; // parent node
Node * children[] ; // child nodes
Tri * reltris[] ; // triangles that change shape upon folding
Tri subtris[] ; // triangles that disappear completely

};

• depth : the depth of the node in the vertex tree.

• label : the node’s status:active, inactive, or boundary.

• proxy : the coordinates of the node’s representative vertex, to which all vertices

represented by the subtree rooted at this node are collapsed.

bound : a bounding volume that contains all triangles supported by this node. For

simplicity the current implementation uses spheres.

• parent : the parent of the node in the vertex tree

• children : a list of the node’s children in the vertex tree.

reltris : a list of triangles with exactly one corner supported by the node. These are the

triangles whose corners must be adjusted when the node is folded or unfolded.

subtris : a list of triangles with two or three corners supported by the node, but no more

than one corner supported by each child of the node. These triangles will be filtered out if

the node is folded, and re-introduced if the node is unfolded.

Note that for memory efficiency, fields such asdepth andlabel can in fact be combined

into a single field, and that lazy evaluation of triangle corners (described below) can be used

to eliminate thereltris field entirely.

2.2 The Active Triangle List

While the vertex tree represents every simplification of the model possible in the VDS

system, theactive triangle listrepresents the current simplification being rendered. The chief



purpose of the active triangle list is to take advantage of temporal coherence. Frames in an

interactive viewing session typically exhibit only incremental shifts in viewpoint, so the set

of visible triangles remains largely constant. In its simplest form, the active triangle list is

just a sequence of those visible triangles. Unfolding a node adds its subtris to the active

triangle list; folding the node removes them. The active triangle list is maintained in the

current implementation as a doubly-linked list of triangle structures, each with the following

basic structure:

struct Tri {
NodePath corners [3];
Node * proxies [3];
Tri * prev , * next ;

};

Thecorners field encodes the triangle at its highest resolution, referencing the three leaf

nodes representing the original corners of the triangle. Theproxies field represents the

triangle in the current simplification, pointing to theboundary ancestorof each corner node.

If a nodeN is inactive, its boundary ancestor is the boundary node on the path fromN to the

root. Theproxies of a triangle in the active triangle list therefore encode the three nodes

whose proxies currently represent thecorners of the triangle.

Rather than referencing trianglecorners directly via pointers, VDS uses theNodePath

structure, a bit vector which stores the path to a node from the root of the vertex tree. In a

binary vertex tree, for instance, each bit would represent a single branch; in an octree, each

three-bit sequence would represent an 8-way branch. Thenth element of the vector specifies

which branch to take at leveln. Referencing nodes in this fashion has advantages over

simple pointers. First, simple bitwise operations can be used to compute the first common

ancestor of two nodes, or to determine whether one node is a direct ancestor of another.

Equivalent tests without the NodePath bit vector would involve hopping through the vertex

tree traversing parent pointers. This will typically exhibit very poor memory coherence and

correspondingly poor cache behavior.

A related—and perhaps more important—consideration comes into play when the vertex

tree as a whole does not fit in memory, and must be paged in as necessary from disk. In this

case accessing a triangle’s original full-resolution corner nodes may be an extremely



expensive operation, to be avoided at all costs during runtime. Storing the path to each

corner node enables the triangleproxies field to be updated during fold and unfold

operations using purely local information, never referencing the original corner nodes.

2.3 Methods

The fundamental methods associated with the active triangle list areaddTri() ,

removeTri() , andrenderTriList() . A simple implementation uses a doubly-linked list

with sentinels:

// Dummy sentinel structures start and end active triangle list:
Tri *startTriList, *endTriList;

addTri (Tri *T)
// append to end of list
T->next = endTriList;
T->prev = endTriList->prev;

T->prev->next = T;

removeTri (Tri *T)
// sentinels ensure prev & next fields won’t be NULL
T->next->prev = T->prev;
T->prev->next = T->next;

RenderTriList ()
Tri *T = startTriList->next;
while (T != endTriList)

renderTri(T);
T = T->next;

Note that this scheme maintains the active triangle list entirely in place. All triangles in

the model are kept in an array; asaddTri() andremoveTri() are called, they thread the

doubly-linked list through the array. Though simple, this approach exhibits poor memory

coherence: after a long series ofaddTri() andremoveTri() calls, the linked list is likely to

hop around the array of triangles seemingly at random. If the entire array does not fit into

cache (or even into main memory), this can greatly degrade performance. Later we will

discuss possible optimizations to avoid this problem.

The fundamental methods of the vertex tree arefoldNode() andunfoldNode() . These

functions add or remove the subtris of the specified node from the active triangle list, update

the active boundary, and update the proxies of the node’s reltris:



foldNode (Node *N)
N->label = boundary ;
// all children should be labeled boundary; change to inactive
foreach child C of N

assert(C->label == boundary)
C->label = inactive ;

// update tri proxies
foreach triangle T in N->tris

// which corner of T does N support?
foreach corner c of {1,2,3}

if (T->proxies[c]->parent == N) break;
T->proxies[c] = N;

// remove subtris from active triangle list
foreach triangle T in N->subtris

removeTri(T);

unfoldNode (Node *N)
assert (N->label == boundary )
foreach child C of N

C->label = boundary ;
N->label = active ;
// update tri proxies
foreach triangle T in N->tris

// which corner of T is currently represented by N?
foreach corner c of {1,2,3}

if (T->proxies[c] == N) break;
// which child of N supports T? Check NodePath in T->corners[]
whichchild = T->corners[c][N->depth];
T->proxies[c] = T->proxies[c]->children[whichchild];

// add subtris to active triangle list
foreach triangle T in N->subtris

addTri(T);

3 VIEW -DEPENDENT SIMPLIFICATION CRITERIA

These structures and methods enable nodes to be folded or unfolded and triangles added

or removed fast enough to respond to run-time events. Criteria for view-dependent

simplification in this framework take the form of a function to choose which nodes are folded

and unfolded each frame. This section describes three such criteria in our current

implementation.

3.1 Screenspace Error Threshold

Our first goal was to remove small and distant triangles from the scene. To formulate

this approach more precisely, consider a node in the vertex tree. Folding this node, which

represents multiple vertices in the original model, clusters those vertices together into the

node’s proxy. The error introduced by collapsing the vertices can be thought of as the



maximum distance that a vertex can be shifted during the fold operation. This distance

equals the length of the vector between the node’s proxy and the clustered vertex farthest

from the proxy. The extent of this vector when projected onto the screen is thescreenspace

error of the node. By unfolding exactly those nodes whose screenspace error exceeds a user-

specified thresholdt, VDS enforces a quality constraint on the simplification: no vertex shall

move by more thant pixels on the screen.

Determining the exact screenspace extent of a vertex cluster can be a time-consuming

task, but a conservative estimate can be efficiently obtained by associating a bounding

volume with each node in the vertex tree. Our current implementation uses bounding

spheres, which allow an extremely fast screenspace extent test but often provide a poor fit to

the vertex cluster. The functionnodeSize() tests the bounding sphere of a node and returns

its extent on the screen as a fraction of viewport size. The recursive procedure

adjustTree() usesnodeSize() in a top-down fashion, evaluating which nodes to fold and

unfold. Nodes with extent greater than the threshold are unfolded and smaller nodes are

folded:

adjustTree (Node *N)
size = nodeSize(N);
if (size >= threshold)

if (N->label == active)
foreach child C of N

adjustTree(C);
else // N->label == boundary

unfoldNode(N);
else // size < threshold

foldSubtree(N);

The recursive functionfoldSubtree() , as the name suggests, folds the entire subtree
rooted at node N:



foldSubtree (Node *N)
if (node->label == active)

foreach child C of N
foldSubtree(C);
foldNode(C);

3.2 Silhouette Preservation

Silhouettes and contours are particularly important visual cues for object recognition.

Detecting nodes along object silhouettes and allocating more detail to those regions can

therefore disproportionately increase the perceived quality of a simplification [15]. A

conservative but efficient silhouette test can be plugged into the VDS framework by adding

two fields to theNode structure:coneNormal is a vector andconeAngle is a floating-point

scalar. These fields together specify acone of normals[14] for the node, which bounds all

the normals of all the triangles supported by the node. At run time a viewing cone is created

that originates from the viewer position and tightly encloses the bounding sphere of the node

(Figure 7). Testing the viewing cone against the cone of normals determines whether the

node is completely frontfacing, completely backfacing, or potentially on the silhouette.

coneNormal
(Nview)

coneAngle (α)
viewConeNormal (Nview)

viewConeAngle (β)

θ

(a) A node containing four triangles, shown with its bounding sphere, and the node’s cone of normals.
(b) The viewing cone originates from the viewer and tightly encloses the node’s bounding sphere.

The angle betweenNconeand Nview is denotedθθθθ.

Figure 7: Silhouette preservation. If any vector within the viewing cone is at right angles to any vector
within the cone of normals, the node may be on the silhouette.

testSilhouette (Node *node, Coord eyePt)

α = node->coneAngle;
Ncone = node->coneNormal;
β = calcViewConeAngle(eyePt, node);
Nview = calcViewConeNormal(eyePt, node);
θ = cos -1 ( Nview • Ncone );
if ( θ - α - β > π/2)

return FrontFacing;
if ( θ + α + β < π/2)

return BackFacing;
return OnSilhouette;

Silhouette preservation fits easily into the screenspace error metric approach presented

above: the silhouette test determines which nodes may be on the silhouette, and these nodes

are then tested against a tighter screenspace error threshold (Ts) than interior nodes (TI).



Following Hoppe [8], we fold nodes thattestSilhouette() evaluates as backfacing,

aggressively simplifying portions of the model oriented away from the viewer. This is called

backface simplification. TheadjustTree() operation is easily modified to incorporate these

tests; Figure 8 illustrates silhouette preservation and backface simplification.

(a) 1% error threshold, backface (b) 1% silhouette error threshold, 20%
simplification enabled (3,388 faces) interior error threshold (1,950 faces)

Figure 8: Silhouette preservation and backface simplification. The original model contains 8,192 faces.

3.3 Triangle Budget Simplification

The screenspace error threshold and silhouette test allow the user to set a bound on the

fidelity of the simplified scene, but often a bound on the complexity (and thus rendering

time) is desired instead.Triangle budget simplificationallows the user to specify how many

triangles the scene should contain. VDS then minimizes the maximum screenspace error of

all boundary nodes within this triangle budget constraint. The intuitive meaning of this

process is easily put into words: “Vertices on the screen can move as far ast pixels from

their original position. Using no more thann triangles, minimizet.”

We perform triangle budget simplification using a priority queue of boundary nodes,

sorted by screenspace error. The nodeN with the greatest error is unfolded, removingN from

the top of the queue and inserting the children ofN back into the queue. This process iterates

until unfolding the top node of the queue would exceed the triangle budget, at which point

the maximum error has been minimized. Pseudocode for this procedure is straightforward,

using a standard heap to implement the priority queue:



budgetSimplify (Node *rootnode)
// Initialize priority queue Q to contain just the rootnode
Heap *Q(rootnode);

while (Q->topnode->nsubtris < tribudget)
unfoldNode(Q->topnode);
// insert children, sorted by screenspace error:
foreach child C of Q->topnode

Q->insert(C);
tribudget = tribudget - Q->topnode->nsubtris;
Q->removeTopnode();

3.4 Related Work

View-dependent simplification criteria have been proposed by several researchers. Xia

and Varshney [15], for instance, describe a novel criterion that uses local illumination

information to preserve detail around regions such as specular highlights and shadow

boundaries. The screen-space error threshold described above was initially presented in [10].

It is similar in principle to the uniform component of Hoppe’sdeviation space[8]. Deviation

space is an ingenious error metric, evaluated at each node, that by its shape also incorporates

a form of silhouette preservation. Deviation space thus provides an elegant solution to two

view-dependent simplification criteria at once. The advantages of the simpler schemes

presented here over Hoppe’s deviation space are their speed and robustness, enabling fast

preprocessing times and simplification of non-manifold meshes. For the specific domain of

large-scale CAD datasets, with messy models and rapid turnaround times, these can be

significant advantages indeed.

4 OPTIMIZING THE ALGORITHM

Our initial implementation ran at interactive rates on small models, on the order of 20,000

triangles. The current system has been demonstrated on models more than two orders of

magnitude larger. Four sorts of optimization made this possible: exploiting temporal

coherence, using visibility information, streamlining the math, and parallelizing the

algorithm.



4.1 Exploiting Temporal Coherence

Interactive viewing sessions exhibit a high degree of frame-to-frame coherence, and VDS

exploits this coherence throughout. The active triangle list, for example, is based on the

assumption that relatively few triangles will be added or removed each frame. As Figure 9

shows, less than 2% of the triangles were added, deleted, or adjusted each frame during a

typical path through the Torp model at a 5-pixel screenspace error threshold. The active

triangle list exploits this temporal coherence by storing the unchanged triangles from frame

to frame, and by supporting efficient add, delete, and update operations for the rest.
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Figure 9: Triangles added, deleted, and adjusted during a 700-frame path through the 699,000-triangle
Torp model, using a screenspace error thresholds of 5 pixels.

Vertex tree traversal can also profit from temporal coherence. Just as few triangles

change status from frame to frame, few nodes in the vertex tree change status from frame to

frame. Under these conditions theadjustTree() function is inefficient, visiting many nodes

unnecessarily. A better scheme is to traverse, not down the vertex tree asadjustTree()

does, but across the vertex tree along the path formed by boundary nodes. This path, called

theboundary path, is maintained as a doubly-linked list by addingprev andnext fields to

theNode structure. In this way nodes far from the boundary are never considered and need

not even be resident in memory. The functionadjustPath() traverses the boundary path,

folding and unfolding nodes as necessary:



adjustPath (Node *root)
Node *currentNode; // node currently being tested
Node *parentNode, *lastParent; // parent of current & last node

currentNode = root->next;
parentNode = lastParent = NULL;
repeat

parentNode = currentNode->parent;
if (parentNode != lastParent)

lastParent = parentNode;
// check parent’s size first
if (nodeSize(parentNode) < threshold)

// parent falls below threshold; fold
foldSubtree(parentNode);
currentNode = parentNode;
continue;

// parent is fine, check current node
if (nodeSize(current) >= threshold)

// current node too large; unfold
unfoldNode(current);

current = current->next;
until (current == root)

Note thatcurrentNode is initialized to the root node. The boundary path actually forms

a circular linked list, going through the root. This simplifies the maintenance of the

boundary path in thefoldNode() andunfoldNode() functions:

foldNode (Node *N)
Node *pred, *succ; // predecessor and successor nodes

N->label = boundary ;
pred = N->children[0]->prev; // set pred to N’s first child’s prev
// all children should be labeled boundary; change to inactive
foreach child C of N

C->label = inactive ;
succ = C->next;

// update tri proxies as before
// remove subtris from active triangle list as before
// adjust active boundary
N->prev = pred;
N->next = succ;
N->prev->next = N;
N->next->prev = N;



unfoldNode (Node *N)
Node *pred = N->prev;
Node *succ = N->next;

foreach child C of N
C->label = boundary ;
C->prev = pred;
pred->next = C;
pred= C;

prev->next = succ;
next->prev = pred;
N->label = active ;
// update tri proxies as before
// add subtris to active triangle list as before

4.2 Using Visibility Information

For many applications, most of the model is invisible most of the time. VDS can use this

visibility information to reduce simplification as well as rendering time. For example, the

process of quickly identifying and rejecting objects outside the visible field of view is called

view-frustum culling. In applications such as architectural walkthroughs, view-frustum

culling can greatly decrease rendering time by not rendering invisible portions of the model.

Efficient view-frustum culling in VDS requires modifying the active triangle list.

Triangles are added to and removed from the list in a haphazard fashion as nodes are folded

and unfolded, so triangles near each other in the model are unlikely to be near each other in

the active triangle list. The solution is to imposespatial coherenceby splitting the active

triangle list into a hierarchy of lists, each representing a region of the complete model. Each

triangle created byunfoldNode() is added to the appropriate list. View-frustum culling is

applied to the lists themselves; the rendering process tests a bounding volume associated with

each list, and skips any lists determined to be invisible.

The vertex tree provides a ready-made hierarchy in which to organize these multiple

active triangle lists. Each triangle can be associated with acull nodethat supports all three

corners of the triangle. The cull node is invisible if its bounding volume lies outside the view

frustum. Since that volume includes all three corners of the triangle, the triangle need not be

rendered if its cull node is invisible. This property holds hierarchically: the descendants of

an invisible node are themselves invisible. View-frustum culling, then, can be easily

incorporated into VDS by creating an active triangle list for each node in the first few levels



of the vertex tree. WhenunfoldNode() creates a triangle, that triangle is added to the list of

the appropriate node, which can be quickly calculated via bitwise operations on the triangle’s

corners.

Not rendering triangles contained by invisible nodes speeds rendering, but an invisible

node may still support visible triangles (Figure 10). This fact gives rise to a stronger

condition: some nodes are not only invisible butirrelevant, meaning that they support no

visible triangles. An irrelevant node therefore cannot affect the visible scene, and the

simplification traversal can choose to fold the node or simply ignore it. The large majority of

invisible nodes are typically irrelevant, so testing for irrelevance provides a significant

speedup. A simple test is to extend the node’s bounding sphere to include all triangles

supported by the node, storing an additional radius.

Figure 10: Visible, invisible, and irrelevant nodes. Invisible nodes lie outside the view frustum.
Irrelevant nodes are invisible and support no vertices of visible triangles.

4.3 Streamlining the Math

Appropriate use of approximations and careful implementation can greatly streamline the

computation involved in evaluating view-dependent criteria. For example, thenodeSize()

function for evaluating screenspace error finds the extent of a cluster of vertices when

projected onto the screen. An exact solution would presumably involve projecting the

vertices (or their convex hull) and comparing the resulting screen coordinates, a dauntingly

expensive operation. SincenodeSize() is typically called thousands of times per frame, an

approximate solution based on bounding spheres is used instead. For a sphere with centerc



and radiusr, seen from the eyepointe with field-of-view angleϕ, the fraction of viewportF

occupied by the sphere is estimated by:

( )2tanϕec −
= r

F (1)

Note that this approximation assumes that the sphere lies in the center of the field of

view, and slightly underestimatesF for nodes near the edges of the viewport. This fairly

terse expression can be optimized still further in context. The functionadjustTree() , for

instance, compares each node’s screenspace extentF to a user-specified thresholdt. This

amounts to evaluating the inequality:

tF ≥ (2)

which reduces to:

( )2tanϕec −≥ tr (3)

Squaring both sides and dividing by tan2(ϕ /2) yields:

( ) 2222 2cot ec −≥ tr ϕ (4)

The cot2(ϕ /2) term is precalculated at the beginning of each frame. This expression is

well suited for rapid evaluation, with no division or square root operations. Fixing the field-

of-view angle throughout the viewing session enables further optimization by computing and

storing the entirer2cot2(ϕ /2) term for each node, instead of just the radiusr of the node’s

bounding sphere. Though these rearrangements may seem minor, this optimization alone

more than tripled the speed of the simplification process in practice.

Here is the modifiedadjustTree() function, with silhouette tests omitted for clarity.

The threshold2 term, as the name suggests, holds the user-specified threshold, squared, and

the newr2cot2 field of theNode structure storesr2cot2(ϕ /2) for the node. Modifying the

adjustPath() function along the same lines is straightforward.



adjustTree (Node *N)
distance2 = (N->center[X] – eyept[X]) 2 +

(N->center[Y] – eyept[Y]) 2 +
(N->center[Z] – eyept[Z]) 2

if (N->r2cot2 >= threshold2 * distance2)
if (N->label == active )

foreach child C of N
adjustTree(C);

else // N->label == boundary
unfoldNode(N);

else // node size is below threshold
foldSubtree(N);

4.4 Parallelization: Asynchronous Simplification

Computer graphics applications commonly parallelize by performing the major rendering

stages concurrently in pipeline fashion. A traditional level-of-detail system might be divided

into SELECT and RENDER stages: the SELECT stage decides which LOD of which objects

to render in framen and compiles them into a display list, while the RENDER process

renders framen-1 [4]. If S is the time taken to select LODs andR is the time taken to render

a frame, performing the two processes as a pipeline reduces the total time per frame from

R+Sto max(R,S).

VDS divides naturally into two basic tasks, SIMPLIFY and RENDER. The SIMPLIFY

task traverses the vertex tree, folding and unfolding nodes as needed. The RENDER task

loops over the active triangle list rendering each triangle. Let the time taken by SIMPLIFY

to traverse the entire tree beSand the time taken by RENDER to draw the entire active list

beR. The frame time of a uniprocessor implementation will then beR+S, and the frame time

of a pipelined implementation will again bemax(R,S). The rendering task usually dominates

the simplification task, so the effective frame time often reduces toR. The exception is

during large shifts of viewpoint, when the usual assumption of temporal coherence fails and

many triangles must be added and deleted from the active triangle list. This can have the

distracting effect of slowing down the frame rate exactly when the user speeds up the rate of

motion.

Asynchronous simplificationprovides a solution: let the SIMPLIFY and RENDER tasks

run asynchronously, with the SIMPLIFY process writing to the active triangle list and the

RENDER process reading it. This decouples the tasks for a total frame time ofR,



eliminating the slowdown artifact associated with large viewpoint changes. When the

viewer’s velocity outpaces the simplification rate in asynchronous mode, the SIMPLIFY

process simply falls behind. Typically, this results in a temporary coarsening of the scene

quality. Under VDS, the portions of the scene near the viewer are refined to high detail

whereas distant portions are simplified to coarse detail. If the user moves forward too

quickly for the SIMPLIFY process to keep up, the viewpoint will leave the highly detailed

region behind and move into a coarsely represented region. The scene rendered for the

viewer remains coarse in quality until the SIMPLIFY process catches up, at which point the

scene gradually refines back to the expected quality. This graceful degradation of fidelity is

much less distracting than sudden drops in frame rate.

4.5 Lazy Evaluation of Triangle Corners

A final optimization worth mentioning reduces the space, rather than the time, required

by VDS. Recall thereltris field of the VDSNode structure, which stores a list of triangles

that must be adjusted when the node is folded or unfolded. We have discovered that this list

can be eliminated by moving the update of triangle corners to the RENDER task, just before

the triangle is rendered. Since this is the last possible moment for update, and since only

triangles that must in fact be rendered are updated, we refer to this aslazy evaluation of

triangle corners. In our experiments, evaluating triangle corners in lazy fashion slowed the

rendering process by around 5%, while decreasing the memory requirements of the vertex

tree by around 15%. The worth of this tradeoff depends on the bottlenecks of the application.

5 CONSTRUCTING THE VERTEX TREE

Thus far we have described the VDS vertex tree and its role in dynamic simplification,

but have left open the question of how to construct the vertex tree in the first place. The

vertex tree is completely determined by the order in which vertices are grouped. Once the

hierarchical grouping of vertices is established, the matter of calculating subtris, bounding

volumes, and so on becomes a purely mechanical process. How then do we perform this

hierarchical vertex clustering?

The possible algorithms form a spectrum, ranging from fast, simple approaches whose

resulting simplifications have moderate fidelity to slower, more sophisticated methods with



superb fidelity. The choice of algorithm for constructing the vertex tree is heavily

application-dependent. In a design-review setting, CAD users may want to visualize their

revisions in the context of the entire model several times a day. Preprocessing times of hours

are unacceptable in this scenario. On the other hand, a walkthrough of the completed model

might be desired for marketing purposes. Here it makes sense to use a slower, more careful

algorithm to optimize the quality of simplifications and prevent any distracting artifacts.

Since our goal is interactive visualization of very large, potentially messy CAD datasets with

rapid turnaround, the clustering scheme we present here emphasizes speed and robustness

above all.

5.1 Tight-Octree Vertex Clustering

Theoctreeprovides a simple top-down approach to vertex clustering. An octree is an 8-

way tree in which each node represents an axis-aligned cube; the root node cube is created

large enough to contain every vertex in the model. The root node is divided in half along the

X, Y, and Z axes into 8 cubical subnodes, the vertices are partitioned among these eight

children, and the process is recursively repeated for any subnode with more than one vertex.

In this way, vertices are clustered roughly according to proximity. Neighboring vertices are

likely to get clustered near the leaves of the tree, whereas distant vertices merge only at

higher levels of the tree.

CAD models are often locally dense but globally sparse, consisting of highly detailed

components separated by large areas of low detail or empty space. In this situation, a more

adaptive partitioning structure is desired. Thetight octreeis a modified octree in which each

node is tightened to the smallest axis-aligned cube that encloses the relevant vertices before

the node is subdivided. This tightening ensures that every subdivision partitions the vertices,

leading to more balanced trees with fewer nodes to traverse and store, and works very well in

practice on all the CAD datasets we have tested.

Tight-octree clustering possesses many advantages. Its simplicity makes an efficient,

robust implementation relatively easy to code. In addition, the spatial partitioning of vertices

is very fast, bringing the preprocess time of even large models down to manageable levels.

Preprocessing the 700,000-polygon torpedo room model, for example, takes only 108

seconds using a tight-octree clustering scheme. Finally, spatial-subdivision vertex clustering



is inherently very general. No knowledge of the polygon mesh is used; manifold topology is

neither assumed nor preserved. In the CAD domain, meshes with degeneracies such as

cracks, T-junctions, and missing polygons are regrettably common, but tight-octree vertex

clustering can operate despite the presence of degeneracies incompatible with many schemes.

5.2 Related Work

Hoppe’s work on view-dependent refinement of progressive meshes [8, 9] resembles the

VDS algorithm presented here in many ways. Aprogressive meshis a hierarchy of edge

collapse operations similar in principle to a binary VDS vertex tree. The view-dependent

criteria introduced by Hoppe to simplify the progressive mesh at run time have already been

discussed. For construction of the progressive mesh, Hoppe uses a careful optimization

approach that sorts possible edge collapse operations into a priority queue based on the error

they add to the mesh [7]. This error is estimated by measuring the deviation of the simplified

mesh from the original mesh at multiple points scattered across the local neighborhood.

The most fundamental difference between VDS and view-dependent refinement of

progressive meshes is their underlying mechanism of merging vertices. VDS clusters

arbitrarily many vertices at once to a single representative vertex, whereas progressive

meshes use edge collapse operations that merge exactly two vertices sharing an edge in the

mesh. As a result, the vertex hierarchy in a progressive mesh will always be binary, whereas

the VDS vertex tree may in principle ben-ary2. Similarly, applying an edge collapse

removes exactly two triangles from the mesh, whereas folding a VDS node may remove

many triangles from the scene. Which scheme is better in general is unclear. The binary tree

of a progressive mesh will be deeper than the corresponding VDS vertex tree, with many

more nodes to traverse and store. On the other hand, the simple and regular structure of the

edge collapse operation, which can be represented by a small, constant-size structure, lends

itself to efficient storage and traversal. The finer granularity of the edge collapse could be an

advantage, since a triangle budget can be specified very precisely, or a disadvantage, since

more nodes must be processed to reach a desired level of simplification.

2 In practice, of course, using a tight octree guarantees a vertex tree of maximum degree

8.



In the context of large CAD datasets, for which VDS was designed, the edge collapse

operation has some definite disadvantages. Since edge collapses that create non-manifold

regions are disallowed, holes in the mesh are not simplified and the genus of the object

remains fixed. As argued above, this can limit the potential for drastic simplification of high-

genus objects. Moreover, since only vertices that share an edge are merged, each object must

be simplified separately, limiting the potential for drastic simplification of complex

assemblies of objects. Furthermore, particularly CAD models may contain inherently non-

manifold features, such as three triangles meeting at a single shared edge; algorithms based

on edge collapses simply cannot represent such models. By clustering based on proximity,

without regard to topology or source object, VDS deals well with all of these problem cases.

Once the tight octree has produced a vertex clustering, we usequadric error metrics

(QEMs) to optimize the placement of the representative vertex. QEMs, introduced by

Garland and Heckbert [6], provide a simple and fast technique for measuring the sum of the

squared distances from a node’s proxy to the planes of all of the triangles that node supports.

Quadric error metrics require relatively little storage, handle non-manifold surfaces robustly,

and produce simplifications of excellent fidelity. We use refinements to the basic QEM

algorithm, in particular the surface-area preservation technique used by Erikson and

Manocha in the GAPS algorithm [4].

6 RESULTS

All results reported here were obtained on a four-processor SGI Onyx2 computer with

195 MHz R10K processors, 1152 megabytes of main memory, 4 megabytes of secondary

cache, and InfiniteReality graphics.

6.1 Performance

Five sample models were chosen to span several CAD categories and a large range of

polygon counts. The models and results are summarized in Table 1.Engineis a detailed

model of an automobile engine containing over 140,000 triangles.Cassiniis an aerospace

CAD model of the Cassini space probe, provided courtesy of the Jet Propulsion Laboratory.

It contains over 415,000 triangles.AMRdepicts the auxiliary machine room of a notional

nuclear submarine, containing approximately 505,000 triangles.Torp is another maritime



CAD dataset, representing the torpedo room of the same submarine with approximately

699,000 triangles. The Electric Boat Division of General Dynamics Corporation provided

both submarine models. The smallest model,bunny, contains 70,000 triangles and comes

from the Stanford 3-D Scanning Repository. Though it hardly qualifies as a CAD model, the

bunny has become an unofficial benchmark for the polygonal simplification field.

Model Category Triangles Preprocessing time Vertex tree nodes Vertex tree storage (w/ gzip)

Bunny Scanned 69,451 7.2 seconds 50,856 5 Mb

Engine Mechanical CAD 140,696 25 seconds 102,577 8 Mb

Cassini Aerospace CAD 415,257 75 seconds 278,329 30 Mb

AMR Maritime CAD 504,969 86 seconds 394,253 32 Mb

Torp Maritime CAD 698,872 108 seconds 816,833 48 Mb

Table 1: Names, categories, and complexity of models in the VDS test suite.

6.2 Artifacts

Implementing asynchronous simplification is relatively straightforward, but care must be

taken to avoiddropouts. Characterized by triangles that disappear for a frame, these transient

artifacts occur when the RENDER process sweeps through a region of the active list being

affected by the SIMPLIFY process. For example, thefoldNode() operation removes

triangles and fills the resulting holes by merging the corners of surrounding triangles. If

those neighboring triangles have already been rendered during the frame whenfoldNode()

adjusts their corners, but the triangle to be removed has not yet been rendered, a hole will

appear in the mesh for that frame.

Dropouts prove difficult to eradicate using simple locking schemes without a significant

performance penalty. One solution that works well is theupdate queue. Rather than

performing thefoldNode() andunfoldNode() operations, the SIMPLIFY process

accumulates these updates into the update queue, marking the node Dirty and placing a Fold

or Unfold entry in the queue. At the beginning of every frame, the RENDER process

performs the updates in the queue, folding or unfolding each node before marking it Clean

again. All changes to the active triangle list take place as a batch before any triangles are

rendered; the shared database is thus kept consistent and dropouts are eliminated.



Another visual artifact that VDS can introduce ismesh folding. Mesh folding occurs

when shifting the position of a vertex causes an attached triangle to flip in orientation (Figure

11). These artifacts are inherent to any vertex-merging or edge-collapse scheme that does

not take care to avoid them. The visual effect of mesh folding depends on the rendering

parameters. Folding a triangle flips its orientation, so such triangles may not be drawn if

backface culling is enabled. If two-sided lighting is enabled, the triangle will be drawn, but

since flipping a triangle negates its normal vector, the folded triangle may be shaded

differently from the surrounding mesh.

Figure 11: An example of mesh folding. When vertices 1 and 7 are merged to form vertex A, the shaded
triangle folds over neighboring triangles, flipping in orientation.

Careful construction of the vertex tree can reduce the likelihood of mesh folding, but to

completely eliminate folding artifacts requires additional view-dependent criteria. One

possibility is to check the normal of each affected triangle; if a triangle normal is flipped, the

fold operation is disallowed. Less expensive tests can be had by enforcing dependency

constraints on the mesh, so that certain conditions must be met before a node may be folded

or unfolded [8, 15]. Since the artifacts are small, and since additional view-dependent

criteria might overly restrict simplification, the current VDS implementation does not attempt

to prevent mesh folding. When high fidelity is a concern, however, adding code to prevent

these artifacts would certainly be worthwhile.

6.3 Visual Results

Figure 12 shows an examples of the VDS system in action, comparing an original model

to run-time simplifications created with various screenspace error tolerances.



Figure 12: Top: The Torp model at original resolution comprises 698,872 faces.
Left: At 0.8% screenspace error (129,446 faces), visual artifacts are fairly subtle.

Right: At 1.5% screenspace error (76,404 faces), distant objects are simplified to almost schematic levels,
while nearby features still possess reasonable fidelity.

7 SUMMARY AND FUTURE WORK

View-dependent simplification can provide a powerful, general framework for

visualizing complex polygonal environments. We have described VDS, a view-dependent

polygonal simplification algorithm particularly well suited to very large-scale CAD datasets.

Such datasets are notoriously difficult for simplification; they are by nature extremely large,

complex, and messy models. Key advantages of VDS include the ability to perform drastic

simplification—despite the presence of very large objects, very small and numerous objects,

or objects of high genus—and the ability to simplify arbitrary polygonal models despite non-

manifold mesh topology.



VDS is also flexible, letting the user tailor the vertex tree construction algorithm and

view-dependent simplification criteria to the application at hand. We have focused on the

tight-octree vertex-clustering algorithm for constructing the vertex tree. The tight-octree is

fast, robust, and completely automatic, making it well suited for large-scale CAD datasets

with rapid turnaround. We have presented multiple view-dependent criteria for

simplification, and discussed many optimizations to the basic VDS system.

The chief disadvantages of VDS are those of any view-dependent polygonal

simplification scheme: an increased computational load on the CPU, and a mismatch to

current graphics hardware, which is largely oriented towards retained-mode rendering.

Many interesting avenues of future work remain to be explored. One promising criterion

for view-dependent simplification would adapt the work of Cohen [2] onappearance

preserving simplification. Using successive mappings, this approach is able to bound, in

screenspace, the distortion of texture maps during simplification. A similar technique can be

applied to anormal map, which represents surface curvature just as a texture map captures

surface color. Appearance preserving simplification thus provides a screenspace bound, not

only on geometric deviation, but on deviation in coloration as well. View-dependent

appearance-preserving simplification seems a promising area for future research.

Oshima [12] and Reddy [13] describegaze-directed simplificationsystems, in which

level of detail is regulated by the direction of a user’s gaze. For example, an object in the

center of a user’s field of view would be allocated more detail than the same object in the

periphery of the user’s vision. Both Oshima and Reddy apply these criteria to selection of

static LODs. We have begun to experiment with gaze-directed view-dependent

simplification, and our initial results are encouraging.

The memory access patterns of VDS could be improved. For example, the current

system implements the active triangle list as a doubly linked list to support efficient insert

and delete operations. This list is maintained in place, threaded through an array of all

triangles in the model. As described above, however, this tends to create a haphazard path

that ruins cache coherence as it hops back and forth through the array. A better approach

would collect all the active triangles into a single coherent array where they could be

rendered with a simple linear pass.



These sort of memory-management issues touch on the larger topic ofout-of-core

simplification, in which the model to be rendered is far larger than main memory. VDS

seems well suited to out-of-core simplification, since only the boundary path and active

triangle list appear crucial to keep resident in memory. Research problems to be addressed

include the out-of-core generation of a vertex tree. Hoppe [9] describes an interesting

solution to this problem for the specific domain of terrain rendering; perhaps his approach

could be generalized to arbitrary polygonal models.

One important area of future research is the question of how to simplify dynamic

polygonal environments. Every simplification algorithm to date assumes that the models to

be simplified are static, and must be run from scratch if the model changes. In an active

CAD session, however, a designer builds a complex model with a series of incremental, often

local changes. For example, many systems are based on constructive solid geometry (CSG)

modeling, in which solids are defined by a series of Boolean operations upon simpler solids.

Supported operations include union, intersection, and subtraction. A simplification system

that supported efficient union, intersection, and subtraction operations upon VDS-style vertex

trees could maintain a simplified representation of the model through incremental updates to

the design. This should enable the designer to view a larger, more complex portion of the

model interactively, which might provide more helpful context. Simplification of dynamic

scenes is a challenging problem, and seems likely to be one of the next frontiers of polygonal

simplification.
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