

1

Abstract
We present GLOD, a geometric level of detail system integrated
with the OpenGL rendering library. GLOD provides a low-level,
lightweight API for level of detail operations. Unlike heavyweight
scene graph systems, GLOD supports incremental adoption and
may be easily integrated into existing OpenGL applications.
GLOD provides a simple path for developers to add level of detail
to their system, while retaining a minimalist close-to-the-hardware
approach compatible with high-performance rendering and future
evolution of the base OpenGL layer.

 Keywords: level of detail, OpenGL, application programmer’s
interface

1 INTRODUCTION
Level of detail (LOD) techniques are widely used today among
interactive 3D graphics applications, such as CAD, scientific
visualization, virtual environments, and gaming. The field of LOD
has grown quite mature [Luebke et al. 2002]. For example, many
excellent algorithms exist for LOD generation, or creating
simplifications of polygonal meshes; they range from fast and
simple to slow but sophisticated, and the resulting simplified
models (themselves called levels of detail or LODs) range from
crude to excellent. A wide gamut of techniques have also been
presented for LOD adaptation, or the run-time task of adjusting
the level of detail to respond to changes in the scene (such as
movement of the viewpoint or objects) while balancing detail with
performance. These range from simple distance-based approaches
that select one of a set of discrete LODs to elaborate view-
dependent LOD methods that perform fine-grained adaptation of
the polygonal tessellation on the fly.

Probably almost every high-performance interactive graphics
application or toolkit built in the last five years utilizes LOD to
trade off visual fidelity for interactive performance. However, no
widely accepted programming model has emerged as a standard
for incorporating LOD into programs.

In this paper we present GLOD, an open source tool for geo-
metric level of detail that provides the full LOD pipeline in a
lightweight and flexible application programmer’s interface (API).
This API is a full-featured, powerful, extendible, yet easy-to-use
LOD system, supporting discrete, continuous, and view-
dependent LOD, multiple LOD generation algorithms, and
multiple LOD management modes. GLOD is not a scene graph
system; instead, it is an API integrated with OpenGL, an existing
and popular low-level rendering API. With this formulation, we
can start to think of geometric level of detail as a fundamental
component of the graphics geometry pipeline, much as mip-
mapping is a fundamental component for controlling detail of
texture images.

2 RELATED WORK
Existing level of detail tools generally fall into three categories:
discrete mesh simplifiers, continuous and view-dependent
systems, and scene graph toolkits. In this paper and throughout
GLOD we use the terminology from Luebke et al. [Luebke et al.
2002]: discrete LOD refers to the creation of several static levels
of detail which are swapped out directly for each other, continu-
ous LOD creates a progressive data structure from which it can
extract a continuous spectrum of detail at run-time, and view-

dependent LOD extends continuous LOD by creating a hierarchi-
cal data structure from which it extracts a mesh tailored to the
given viewpoint. GLOD supports all three LOD approaches.

Discrete mesh simplifiers, such as QSlim [Garland and Heck-
bert 1997], Simplification Envelopes [Cohen et al. 1996], and
Jade [Ciampalini et al. 1997], address LOD generation but not
LOD management. In other words, these tools take a complex
object and generate simpler discrete LODs, but do not attempt to
address run-time adaptation of those LODs to meet interactive
goals such as a triangle budget or error threshold. In fact many
simplifiers do not even provide error bounds for use during
adaptation, meaning a developer or artist must decide manually at
what distance the LOD is appropriate. Furthermore, programmers
using a mesh simplifier must convert their model data to and from
the tool’s format; this can be problematic if the simplifier does not
support all the attributes required by the programmer’s models.
Experimenting with different simplifiers typically requires even
more converting back and forth between formats. One strength of
GLOD is its use of OpenGL vertex arrays as a unified geometry
interface—by design capable of expressing any attributes the user
may wish to render—for input and output to many different
simplification algorithms.

Continuous and view-dependent LOD systems do address LOD
management to some degree, since they are capable of extracting
and rendering meshes at run-time. Hoppe’s Progressive Meshes
(PM) algorithm [Hoppe 1996, Hoppe 1998] deserves special
mention because it has been integrated into Microsoft’s DirectX
API, providing developers with some of the transparency benefits
that GLOD offers. However, PM, like other continuous LOD
algorithms, limits the user to specifying the number of vertices or
triangles desired; it does not attempt to manage the level of detail
to minimize error or satisfy a triangle budget, so the task of LOD
management still falls to the developer. View-dependent systems
allocate detail amongst different portions of an LOD, but still do
not address the problem of allocating detail amongst different
objects. Furthermore, some view-dependent algorithms, such as
FastMesh [Pajarola 2001] and [Lindstrom 2003], do not support
rendering to a budget, but only an overall error threshold. Also
note that many view-dependent algorithms target only the special-
ized domain of terrain simplification [Lindstrom and Pascucci
2001][Duchaineau et al. 1997].

Scene graphs toolkits such as Open Inventor [Wernecke 1993],
OpenGL Performer [Rohlf and Helman 1994], and OpenSG
perform LOD management, but they provide heavyweight “all or
nothing” solutions that lump LOD in with myriad other aspects of
an interactive computer graphics system: hierarchical transforma-
tions and instancing, view-frustum culling and visibility, memory
management and paging, and so on. They do not perform LOD
generation, but some have external utilities such as OpenGL
Optimizer to perform the generation. OpenGL Performer [Rohlf
and Helman 1994], for example, is a powerful and well-written
library for high-performance rendering. It has a rich set of LOD
management and rendering options, such as blended transitions
and feedback-guided frame rate control. It even incorporates
support for a restricted form of view-dependent simplification.
But a developer wishing to use Performer for LOD must use the
full set of Performer scene graph constructs, and indeed must
build his or her entire interactive graphics system on Performer,
from the ground up. Often this requirement is too restrictive or
inappropriately burdensome, and instead the developer ends up
with a different burden: creating yet another custom LOD system.

GLOD: A Minimal Interface for Geometric Level of Detail

(Online ID papers_0633)

2

Another large and powerful system, the Visualization Toolkit
(VTK) [Schroeder et al. 1998], is not a scene graph but does
provide support for both generation and management of level of
detail. It provides multiple generation algorithms and a target
frame rate mode based on measured rendering time for the various
LODs. However, although this extensive toolkit allows easier
incremental adoption than the scene graph systems, it still wraps
all aspects of the underlying graphics API in a higher level
abstraction, making it harder for the application to directly control
and access the lower level rendering state. VTK is not intended to
be a tool for the OpenGL developer, but a higher-level tool for
rapid design of visualizations.

3 DESIGN GOALS
GLOD aims to cover the full gamut of LOD generation and
management tasks, from discrete mesh simplification to run-time
adaptation of discrete, continuous, and view-dependent LOD.
However, GLOD follows an entirely different design philosophy
from existing systems. The GLOD interface more closely resem-
bles a driver-level extension of the graphics API than a high-level
application toolkit. This distinction, which may at first seem
subtle, leads to profoundly different usage patterns.

We have designed and implemented GLOD with the following
goals in mind:

• Functionality: The system should support the many ways that
geometric level of detail is used in production graphics applica-
tions. It should provide a rich set of options for LOD genera-
tion (including manual LOD generation by artists) and LOD
management, and be flexible enough to handle a variety of
application usage patterns.

• Ease of adoption: GLOD should be easy to use and easy to
incorporate into existing applications. It should support incre-
mental adoption so that applications retain as much control as
they desire.

• High performance: GLOD should not sacrifice performance
for flexibility. For every type of performance-critical LOD task,
the API must support a way to achieve that task in a high-
performance fashion.

• Longevity: Graphics hardware and associated APIs are con-
tinuously evolving. The GLOD API should support current
development trends, such as increased programmability in the
hardware, and avoid relying on features that seem likely to go
away in future hardware.

• Robustness: The system should be able to work with arbitrary
real-world models in the presence of real-world problems such
as degenerate triangles, non-manifold topology, and coincident
geometry. Note that it may also provide specialized modes for
better performance on models with known properties, such as
terrains or closed manifold meshes.

• Extensibility: GLOD should be easy for developers to extend
by adding new general simplification algorithms, or special-
case algorithms intended to handle particular situations (e.g.,
terrains).

4 DESIGN DECISIONS:

4.1 Use Minimal Structure
Minimizing the structural complexity of the underlying system
helps keep the API clean, broadly applicable, and easy to adopt.
The conventional design of a library supporting level of detail
stores the complete scene graph, a hierarchy of objects organized
by spatial and functional relationships. Objects are nodes in the

hierarchy, each consisting of one of more connected polygonal
meshes (often subnodes in the hierarchy). Different portions of
each mesh may in turn be split into submeshes, or patches, that
require different rendering states (for example, different textures).
In this framework, LODs might be implemented as a series of
sibling nodes at the object level, with some mechanism to select
which LOD to traverse during rendering. An LOD system pre-
sented with this structure is aware of and has control over the
entire rendered scene. Is such a hierarchical scene graph the
minimal structure necessary to support level of detail? We argue
that full LOD functionality can be achieved with less structural
overhead. GLOD is very consciously not another scene graph
system, and in fact does not even include a full-fledged notion of
hierarchy.

What then are the minimum structural requirements for creat-
ing, managing, and rendering multiple multiresolution objects?
GLOD uses three basic structures: patches, objects, and groups. A
patch is a collection of geometry that shares a common rendering
state. Patches are the fundamental units of rendering in GLOD:
each patch is rendered—potentially simplified from its original
form—in its entirety with a single call. An object is a collection of
patches, which may be connected portions of the same mesh (i.e.,
sharing vertices). Objects are the fundamental unit of mesh
simplification in GLOD: all patches within an object are simpli-
fied together to form a multiresolution hierarchy. Objects may be
instances, which are duplicated versions of objects that are
simplified individually. A group is a collection of objects, some of
which may be instances. Groups are the fundamental unit of
adaptation in GLOD: the objects in a group can be adapted with a
common goal in mind, such as an overall triangle budget.

This structural design of patches, objects, and groups was mo-
tivated by consideration of several questions, which we revisit
here as they provide insight to our design and design process.

Do we need patches? Clearly the user must be able to vary
some aspects of rendering state, such as texture map or shader
bindings, across objects. The patch structure is motivated primar-
ily by the pragmatics of high performance rendering. The basic
primitive for fast rendering on current hardware is a large indexed
array of vertices. Any rendering engine intending to achieve high
performance on modern graphics hardware must issue as many
vertices as possible without changing graphics state, which incurs
a call to the driver and a pipeline flush. In addition, the library
should keep those vertices as “close” as possible to the hardware,
storing them in fast-access AGP memory or even remotely in on-
card video memory to maximize throughput to the GPU. Using
patches to “clump” geometry into batches enables GLOD to use
the coarse-grained dataflow required for high-performance, while
allowing the user to vary rendering state across that geometry.

Do we need objects? Since the rendering state (e.g. active
texture map) often varies between adjoining sections of a single
mesh, meshes will often comprise multiple patches. Simplifying
each patch individually would lead to cracks along their bounda-
ries—a well-known problem in mesh simplification. Aggressive
simplification algorithms (e.g. [Rossignac and Borrel 1992],
[Garland and Heckbert 1997]) can even merge vertices from
separate meshes within an object. We need a structure above the
patch level that defines which patches and which vertices are to be
simplified jointly.

Do we need groups? Patches and objects alone are not suffi-
cient to implement global goals, such as adapting a set of objects
to meet a total triangle budget. Adapting to a budget requires
global knowledge, generally treating the cost and visual benefit
(or error) associated with all levels of detail as input to an optimi-
zation process [Funkhouser and Sequin 1993]. The GLOD library
has this knowledge, but the application typically does not. If
budget adaptation were implemented at the application level, the

3

application would have to continuously query the library for each
LOD’s cost and benefit. This requires a ruinous number of API
calls and places a considerable burden on the application pro-
grammer. Furthermore, certain optimizations, such as moving
LOD geometry into fast on-card video memory, will be expensive
or impossible if the application must make many calls to adapt
each LOD each frame. So we chose to add another layer of
abstraction—groups—to allow the user to specify simplification
goals and budgets across multiple objects.

Do we need instances? Often an object must be rendered mul-
tiple times per frame with different transformations, for example
during geometry instancing or rendering with shadow mapping.
Clearly this re-rendering is a common and vital technique in
interactive rendering, but must we explicitly address it in the
GLOD API? In principle one could simply adapt the object and
render its patches multiple times per frame, once per instance of
the object. In practice, efficient rendering, adaptation, and
memory use dictate explicit support for instancing. For example,
adaptation of a continuous LOD often begins from the previous
frame’s LOD and makes only incremental changes, but repeatedly
adapting the LOD to completely different transformations de-
stroys this coherence and becomes much more expensive. Another
option is to duplicate the object for each instance, but this can be
prohibitively wasteful of memory. Thus it seems an instancing
mechanism is a necessary feature of an LOD API. Instancing in
GLOD provides a unique copy of the object’s simplification state
while sharing the same underlying geometry storage. In keeping
with our minimalist approach to the API, we were careful to add
this capability without making instances their own first-class
entity: instances are simply objects created with glodInstanceOb-
ject() instead of glodBuildObject().

Do we need additional hierarchy? Objects can collect multi-
ple patches and groups can collect multiple objects. We consid-
ered letting groups collect other groups, much as OpenGL display
lists can call other display lists. This would give GLOD the
expressive power of a scene graph, able to encode very general
hierarchies of detail. However, it can also complicate the logic for
adaptation, for example if the user-specified triangle budget for a
group exceeds that of its parent. Nor is it clear that adding
hierarchy provides additional optimization opportunities for
efficient rendering. The major efficiency benefits of a scene-graph
organization, such as view-frustum culling and sorting by render-
ing state to minimize state changes, may still be performed if
appropriate, even by incorporating GLOD into an existing scene
graph. On the other hand, the lack of enforcement of a pre-
determined GLOD scene graph structure on the application
simplifies the adoption of GLOD or its integration into an existing
application. Having decided consciously not to make GLOD into
yet another scene graph engine, we affirmed that decision by
avoiding the temptation to permit additional layers of hierarchy
beyond the minimal requirements of patch, object, and group
structures.

Can we render groups/objects? Since objects consist of
patches and groups consist of objects, it would undoubtedly be
convenient at times to render an entire object or an entire group
with a single call. However, this fails our principle of minimalism.
A hypothetical “glodDrawObject” or “glodDrawGroup”
command could be implemented using the glodDrawPatch
command, however, neither is strictly necessary and thus neither
belongs in a minimal LOD library. In fact, the decision to expose
LOD rendering at the individual patch level is an important
distinction from scene graph libraries. It puts control of the entire
rendering state in the hands of the application, and frees GLOD
from tracking anything except the minimum required to issue
geometry.

4.2 Follow the Red Book Road:
The OpenGL Way

GLOD builds on, draws inspiration from, and coexists cleanly
with OpenGL. This has several advantages: First, by building on
an industry standard, we base our system on a robust developer-
backed system that is guaranteed to stay up-to-date as graphics
technology changes. Second, the use of the OpenGL brings along
with it a programming model with which users are accustomed
and comfortable. Most importantly, OpenGL brings along a
design philosophy that can be used to guide the complex decision
processes of generating a general purpose geometric level of detail
API.

The lightweight procedural interface of OpenGL suits our mini-
malist approach to LOD management better than a full-featured
object-oriented system such as Performer or VTK. These are
excellent toolkits, powerful and well-designed, but both are big,
full-fledged systems best used “whole hog” ; it is difficult to adopt
Performer, for example, into an existing rendering engine without
starting from scratch. Our system is inspired instead by the
minimalist procedural design of OpenGL, and looks to various
aspects of that design for motivation. For example, the application
can specifying individual level of detail surfaces much as it might
load up individual image resolutions in the OpenGL MIP-
mapping interface. Similarly, the texture compression interface
provides an example of preprocessing data: textures can be
uploaded to OpenGL in a known format, processed by the library,
and downloaded again in compressed binary form for later use.

GLOD, like GLU and GLUT, sits alongside OpenGL and often
directly calls OpenGL. Important examples of GLOD interaction
with OpenGL include:

• Reading vertex array pointers and state.

• Reading matrices and viewport for view-dependent LOD (see
section 8).

• Caching geometry in GPU-side memory.

We have articulated a handful of design rules to guide our
interaction with OpenGL, aiming to maximize the predictability
and usability of GLOD given its closeness to the underlying
graphics library:

• Use existing OpenGL calls and state whenever possible. For
example, the application should not have to specify the camera
twice, once to OpenGL and once to GLOD. Rather, it can ask
GLOD at the appropriate time to grab its transformations from
OpenGL. Similarly GLOD takes cues from the current client-
state as to which vertex attribute arrays should be captured to
generate an object’s level of detail hierarchy.

• Follow OpenGL calling conventions, data types, and stan-
dards. The user should not have to learn new data types when
using GLOD.

• Minimize the number of calls and components in GLOD that
will be perceived as “ new” to OpenGL. This rule is motivated
by our goal that GLOD should be easy to adopt, a simple and
straightforward extension.

• Consider efficiency. Minimize interaction with OpenGL; even
reading GL state can be costly. Similarly, avoid GL con-
structs—such as the glPushAttrib/glPopAttrib commands—
known to be expensive in practice.

• Do not interfere with OpenGL state and semantics. This is a
key guiding principal of GLOD.

We expand on these principles and the resulting design decisions
below.

4

4.2.1 Act Like OpenGL
We build on OpenGL programming constructs, such as types and
calling conventions, whenever possible to provide a consistent
and familiar interface for the programmer. For example, we push
the majority of GLOD state control behind an OpenGL-style
Get/Set parameter interface. This leads to an interesting design
choice worth mentioning: unlike OpenGL, GLOD has no global
state. Instead, each instance of the three standard GLOD primi-
tives (patches, objects, and groups) has its own state controlled by
get/set functions. (The lack of global state prevents us from
putting various global controls on GLOD; for example, we cannot
place a global memory budget on GLOD. However, such controls
can still be enforced by the user.) We also employ a naming
mechanism for objects, patches, and groups inspired by GL
texture namespaces.

One especially noteworthy way that we leverage OpenGL is the
use of vertex arrays as the geometry interface for GLOD. This is
discussed further in Section 7.

Having determined to model GLOD on OpenGL, an interesting
design decision arises: Should GLOD become OpenGL in some
fashion? We considered three options: pretend to be OpenGL,
propose an extension to OpenGL, or build a closely-coupled
utility library tightly integrated with but separate from OpenGL.

Pretend to be OpenGL: By intercepting OpenGL function
calls and masquerading as the graphics driver, it is possible to
non-invasively instrument, redirect, or otherwise manipulate
OpenGL programs [Humphreys 2002, Mohr and Gleicher 2002,
Niederaur et al. 2003]. The earliest stages of GLOD used Chro-
mium to intercept OpenGL commands and present the GLOD
interface as if it was built directly into the graphics library (for
example, allowing GLOD-specific parameters to be manipulated
with the glGet/Set interface). We felt that pretending to be the
driver enforced the low-level close-to-the-hardware philosophy
we desired: OpenGL does know anything about high-level
organization of the scene that it is rendering. Operating at the
driver level also has its conveniences; for example, it is a simple
matter for a driver-level API to track the various matrices and
rendering state that GLOD uses. Ultimately, however, we felt that
pretending to be part of OpenGL was too unwieldy and would be
difficult for developers to adopt. Furthermore, the computation-
ally intense tasks in GLOD (such as mesh simplification) are
larger, slower operations than are likely to be included in a real
driver; these computations belong in utility libraries and toolkits,
not the driver itself.

Propose an extension: GLOD began as a draft proposal for an
OpenGL extension. As an extension, GLOD would have all the
benefits just listed. However, to convince a vendor that an
extension is so valuable to be placed in the driver would require
an extremely compelling demonstration of value, with an active
user community clamoring for the new functionality. The best
way to build such a community, it seemed, was to build a stand-
alone utility library that established the value of a low-level
geometric LOD toolkit.

Build a closely-coupled utility library: As the API evolved,
we realized that we could encompass the low-level minimalist
approach to LOD without needing to be inside the driver. Though
lacking direct access to some useful information about rendering
state, positioning GLOD as an external library vastly simplifies
deployment and adoption by researchers and developers interested
in trying it out. Ultimately if the graphics community embraces
the concept of low-level geometric LOD, the ideas presented in
this paper could move closer to the hardware and the base API in
the form of vendor-specific extensions.

4.2.2 Don’t Touch the Rendering State
Since GLOD allows and requires the user to set up the rendering
state before drawing patches, GLOD should have no side effects
on OpenGL state besides the issuing of geometry. During the
design stage the temptation to let GLOD change the OpenGL
rendering state was sometimes strong. For example, instantiated
geometry will typically be transformed before being drawn, with a
different transformation for each instance. A conventional LOD
management system, built into a scene graph, will store and effect
these transformations, saving the programmer the effort of
explicitly performing the transformation. However, GLOD treats
the GL state as sacred: no GLOD call should change the state as a
side effect. Therefore, while GLOD allows binding a transforma-
tion to an object, that transformation is used only for adaptation.
The actual change to the GL matrices before drawing the patches
of that object remains the application’s responsibility. Note that
this also gives the user the freedom to separate adaptation and
rendering transformation, for example to adapt the level of detail
in a scene according to one camera position, then render the scene
from another position—this is an important if occasional applica-
tion of LOD that can arise e.g. during shadow mapping and
occlusion culling.

In Section 4.1 we discussed how the hypothetical functions
glodDrawObject and glodDrawGroup failed to satisfy the
guiding principle of minimalism. These functions would also
violate the key principle of noninterference, since the ability to
draw a set of patches with a single call implies storing the render-
ing state of each patch and setting that state before rendering the
patch.

4.3 Use an Implicit Camera
Most applications of level of detail need run-time knowledge
about the scene. In particular, degrading the detail of objects
further from the viewpoint would seem to require global scene
knowledge about the camera and objects. Specifically, we
require the perspective projection parameters (field of view,
aspect ratio, and so on), the position and orientation of the
camera, and the position and orientation of each object. How can
we capture this knowledge without a scene graph?

There are several options. First, we could deal with the camera
by providing functions for the user to explicitly set camera
position, rotation, field of view, etc. as global properties of the
scene. This is the traditional approach, storing all camera informa-
tion in a parametric representation. However, this would place
limitations on the camera – for example, if GLOD only provided
the parameters used by the gluPerspective() function, we
would be unable to support an off-axis viewing frustum.

Another option is to track the OpenGL ModelView and Projec-
tion matrices and infer the camera parameters and camera-object
transforms from these matrices. This implies an API function for
the user to tell GLOD when to apply the current matrices to a
given object or instance. An earlier version of GLOD did in fact
use this approach, analyzing the matrices to calculate viewpoint,
view vector, up vector, field of view, etc. However, this approach
is still limited by the camera model built into GLOD and our
ability to anticipate and reverse-engineer the different matrices a
user might employ.

A better option, which we ultimately settled on, is to use a
completely implicit model of the camera and camera-object
relations. When the user binds the matrices to an object or
instance, instead of inferring view parameters we can simply store
the matrices with that object. When adapting the LOD groups, we
can use these matrices directly, e.g. by transforming vertices from
a bounding box into screenspace to estimate the object’s size.
This method is somewhat more expensive than, for example,
estimating the solid angle subtended by a bounding sphere given

5

known camera parameters, but it is much more general. The
screenspace size of objects can be estimated even in non-
perspective situations, such as an isometric projection or a planar
“ fake shadow” matrix.

5 GLOD

The GLOD API is inspired by OpenGL and designed around the
pipeline depicted in figure 1. Our system presents three modules:
the hierarchy builder, the group manager, and the renderer. The
API calls themselves can be separated into module-specific calls,
data control calls, and setting calls. The benefit of this design is
that it allows individual components of the system to be used
autonomously – for example, using GLOD simply as a geometry
simplifier with no management or rendering component.

The most important set of calls in GLOD is the parameter inter-
face. These calls take the general form:

glod[Object|Group]Parameter[if](name,pname,value);
glodGet[Object|Group]Parameter[if]v(name,pname,
*dat)

These calls for GLOD objects and groups allow you to fully
customize the behavior of GLOD. As throughout the library, we
consciously mimic the function names and conventions of
OpenGL.

Building objects
glodNewObject(objname, format, grpname);

glodInsertArrays(objname, patchname, mode,
 first, count, level, error);
glodInsertElements(objname, patchname,
 mode, count, type, indices,
 level, error);
glodBuildObject(objname);
glodInstanceObject(objname, instname, grpname);

Building a GLOD object is simple: you call glodNewObject to
specifying a hierarchy type, a name, and a group. You then insert
patches into the object by configuring OpenGL vertex arrays in
the standard way and then calling glodInsertArrays as if
you were calling glDrawArrays to render the patches. When all
the patches are inserted into the object, you call glodBuildOb-
ject to turn the geometry into a multiresolution hierarchy. In
effect, you are able to convert your fixed-resolution DrawArrays
call into a multiresolution DrawArrays call in a few short steps.

Our present implementation of GLOD can build discrete, con-
tinuous, and view-dependent hierarchies. All of our LOD genera-
tion is currently done using the XBS library (Section 7). Render-
ing of discrete LODs is done using an custom module, while run-
time adaptation and rendering of continuous and view-dependent
LOD is provided using the VDSlib library (Section 8). Using the
parameter interface above, one can configure the builder, for
example, to use different error metrics for different objects, or to
change between full and half-edge collapses.

Managing Groups of Objects:
glodBindObjectXform(objname);
glodObjectXform(objname, float[16] m1,
 float[16] m2, float[16] m3);
glodAdaptGroup(grpname);

Once an object is built, you must adapt it to a particular level of
detail by calling glodAdaptGroup to a particular chosen goal.

If you have chosen a screen-space-aware adaptation goal, then
you must tell GLOD about the object and your camera. This is
done either by specifying (up to) three transformation matrices
using glodObjectXform, or by telling GLOD to automatically
obtain the GL matrices using glodBindObjectXform. GLOD
supports adaptation to different error measures (geometric,
normal, even color- or texture-based in principle) in both screen
space and object space. It also supports both screen-space and
object-space triangle budgets. Finally, various limits can be set on
adaptation to prevent GLOD from consuming too much band-
width and CPU during large changes in the cut.

Rendering
glodDrawPatch(objname, patchname);

Preparing an object to be drawn represents most of the coding
necessary to use GLOD. Once a patch has been adapted as part of
a group, glodDrawPatch will actually issue its (simplified)
geometry to draw it to the screen. The behavior of this call is
controlled by the OpenGL vertex array interface: to prevent
GLOD from issuing certain attributes (normals, texture coordi-
nates, etc.0 from issuing, disable the corresponding OpenGL array
states.

Data Flow
glodReadbackObject(objname, *data);
glodLoadObject(objname, *data);
glodFillArrays(objname, patchname, first);
glodFillElements(objname, patchname, type,
*elements);

Simplification can be a time consuming process best performed
offline, rather than for example during game startup. To do this,
you first determine the size of the object’s readback buffer using
the glodGetObjectParameter interface. You then allocate a
buffer and pass that to glodReadbackObject. Loading of an
object reverses this process. Readback is supported on all hierar-
chy types.

Similarly, sometimes we may not want to render a patch, but
rather read its adapted geometry back into our application.
Consider, for example, the case of a command-line simplifier.
You do this by building and adapting an object to some desired
level and then determining its triangle count using the glodGe-
tObjectParameter interface. After allocating and binding the
OpenGL vertex arrays to appropriate buffers, you call glodFil-
lArrays or glodFillElements, which copies the current
geometry into the currently bound vertex array.

Putting it All Together
Below we show a simple usage of GLOD: render a 10,000-
triangle version of some model using view-dependent rendering.
First, you set up your object:
glodNewObject(0, 1, GLOD_CONTINUOUS);
for(each patch in our object) {
 ... bind the vertex array for this patch ...
 glodInsertArrays(0, patch, GL_TRIANGLES, 0,
 num_verts, 0, 0);
}
glodBuildObject();
glodGroupParameteri(1, GLOD_ADAPT_MODE,
 GLOD_TRIANGLE_BUDGET);
glodGroupParameteri(1, GLOD_ERROR_MODE,
 GLOD_SCREEN_SPACE_ERROR);
glodGroupParameteri(1, GLOD_MAX_TRIANGLES,
 10000);

Now, in your render loop:
// get your camera & modelview matrix just
// right

Builder
Hierarchy Group

Manager

glodInsertElements
glodInsertArrays glodFillElements

glodFillArraysglodLoadObject
glodReadback

glodBuild glodAdaptGroup

Renderer

glodDrawPatch
glodObjectXform

6

glodBindObjectXform(0, GL_PROJECTION_MATRIX |
 GL_MODELVIEW_MATRIX);
glodAdaptGroup(1);

for(each patch in the object) {
 // bind texture & whatever else
 glodDrawPatch(0, patch);
}

Of course, many variations on this theme are possible. As
discussed in Section 4.2, GLOD operates seamlessly with various
advanced GL features ranging from fragment programs and
custom vertex attributes to normal maps. This is largely because
of our policy of not interfering with OpenGL state. Of course, full
support of OpenGL sometimes has a caveat: geometric LOD is not
meaningful for certain vertex programs, for instance.

6 IMPLEMENTATION ISSUES
From an implementation standpoint, the building, managing, and
rendering modules are abstract concepts within the procedural
GLOD API rather than being actual pieces of code. Internally, we
map raw API calls on a per-object basis to routines linked in from
other libraries. In effect, our GLOD implementation is a (large)
body of routines that wraps pre-existing LOD libraries behind a
single coherent interface. Because we have tried to build the
GLOD API to meet the requirements of a wide variety of LOD
algorithms, we must be able to wrap a large number of different
LOD libraries behind this single interface, thus unifying the
current chaos of LOD APIs.

Despite the apparent simplicity of this architecture, wrapping
libraries behind a GLOD interface is a non-trivial effort. Each
LOD library has a different programming model, which must be
reconciled with the GLOD model. An additional complication is
that most LOD systems are application specific and support only a
subset of GLOD’s capabilities. Similarly, few LOD implementa-
tions respect rendering state, and must be modified to do so.

The initial version of GLOD, which has been available in prere-
leases for six months already, tries to provide a broad but fast
feature set that is reasonably performance-competitive. In the
following sections, we discuss some important implementation
issues we faced in order to make this system operable and effi-
cient.

6.1 Managing Heterogeneous Groups
A major challenge we faced in making GLOD function coherently
was providing a flexible mechanism for group adaptation. This
process is difficult because we do not want to restrict GLOD to a
particular type of error metric. Consider the design space in which
we must work: vertices can have any number of different attrib-
utes, each of which might have a particular error associated with
it. The relative priority of an object compared to other objects in

the group might be a weighted function of any of these parame-
ters. Furthermore, because multiple types of hierarchies can exist
in a single group, we must make sure that the different hierarchies
have a consistent computation for each type of error.

The GLOD get/set interface is sufficient, we believe, to support
all of these possible settings. Error metric and error weighting can
be set on an per-attribute, per-object basis, or globally on a per-
group basis.

Another challenge is providing group management over a het-
erogeneous set of hierarchy types. For example, a group may
contain discrete, continuous, and view-dependent hierarchies, all
of which may require adaptation to meet a triangle budget.
Toward this end, we have extended the traditional dual-queue
optimization algorithm with an additional layer of abstrac-
tion[Duchaineau et al. 1997][Funkhouser and Sequin 1993]. The
queues actually contain a set of object hierarchies, each of which
may be asked to coarsen or refine itself, according to its place on
the queues. These requests contain limits as well, informing the
hierarchy how much adaptation it can perform before its turn
should be relinquished to another hierarchy on the queue.

6.2 Memory Management
Efficient rendering of multiresolution data requires caching the
current cut in AGP or video memory. While there are a number of
interfaces that exist for this purpose, they are tuned for use by the
application user. We should be reluctant to use these extensions,
due to our stated design goal of not interfering with OpenGL
state. However we felt that the conflicting goal of efficient
rendering demanded an exception in this case. In order to mini-
mize interference with OpenGL, we must provide a mechanism to
control how much video memory is used by GLOD, how that
memory is shared between objects within GLOD, and how much
data is transferred over AGP during adaptation.

We experimented with one way to provide these controls: let
the user provide to GLOD a pre-allocated “ fast memory” buffer,
for example from the NVIDIA VAR extension. From that point,
GLOD would internally allocate the buffer amongst the rendered
objects. Unfortunately, this level of memory allocation and
management is complex to implement, and other fast-memory
schemes (namely the ARB VBO extension) provide locking and
unlocking mechanisms that allow the mapped region to relocate,
making direct memory management infeasible. Even if the user
provided a vertex buffer object to GLOD which we then mapped
ourselves, we would still be left with the ongoing issue of
managing the buffer for ourselves –a messy problem with many
complicated constraints.

The emergence of the VBO extension, while incompatible with
our initial memory-management approach, itself provides a
cleaner solution by allowing GLOD to use vertex buffer objects
internally. Because VBO serves, in part, as a paging system for
the working set of geometry being used by the video card, we can
defer both the overall buffer management and the per-object-
buffer-management problems to VBO and the graphics driver.
The issue of AGP flow to the graphics card during adaptation is
controlled with a simple per-group limit on the adapt call.

7 CROSSBAR SIMPLIFIER
We now turn to the crossbar simplifier (XBS), which serves as the
LOD generation component of GLOD. Our design goals of
functionality and extensibility demand a new and extremely
flexible approach to geometric simplification. XBS provides a
rich set of options for simplification and can be used as a stand-
alone simplifier as well as the unifying component of the GLOD
system. This simplifier is responsible for converting raw geometry
received from the vertex array-based API calls into one of a
number of hierarchy types, using one of several types of operators

Simplifier

Model

Input
From GLOD

PLY
OBJ

Operator
Edge collapse

Half edge collapse
Vertex Pair

Vertex Cluster

Error Metric
Sphere
Quadric
Texture

Hierarchy
Discrete

VDS
MT

Queue
Greedy
Lazy

Independent
Randomized

7

and error metrics, driven by one of several types of simplification
queues. By choosing among the modes with simple parameter
switches, the application developer can affect the speed and
quality of the simplification process, as well as the quality and
management properties of the output. XBS provides a uniquely
flexible architecture for mesh simplification; in this section we
discuss the design and implementation to achieve this level of
flexibility.

7.1 Algorithm and Component Overview
In the context of GLOD, the input to XBS comes from the GLOD
API in the form of several indexed (but possibly unshared) vertex
arrays, one for each patch of the object to be built. In stand-alone
mode, XBS can read these data from a standard 3D file format
such as PLY or OBJ.

Because the input data may not have its vertices fully shared,
the Model performs an initial vertex sharing to merge vertices
with geometric coordinates that are the same to within some
specified tolerance. When vertices have similar geometric coordi-
nates but different attribute values, they are linked together as
coincident vertices but not explicitly merged. This is similar to
Hoppe’s construction of wedges [Hoppe 1998], but here we
eliminate the need for auxiliary structures by maintaining them as
fully-represented, independent vertices. In addition to keeping our
representation simple, this choice is also consistent with the
expected representation within the hierarchies we produce, which
will generally store vertices in vertex arrays. If the Operators
support the maintenance of these multi-attribute vertices, then the
simplification process will maintain the connectivity of these
vertices while allowing triangles with different attributes at the
same vertex. After sharing, the vertices are indexed by storing
with them the ids of their adjacent triangles.

After the input data has been processed in the Model, the Sim-
plification Queue initialized according to the type of Operator and
the Error Metric. The Queue may employ one of several different
policies to issue operations to be applied by the Simplifier,
including the Greedy, Lazy, and Independent policies [Luebke et
al. 2003]. For example, the goal of the Lazy policy is to reduce
the number of times the Error is needlessly recomputed for each
simplification operation as a result of applying neighboring
operations. In the Greedy scheme, the Error metric is recomputed
immediately for all added or modified Operators, whereas the
Lazy scheme simply marks them as dirty. These dirty Operators
only have their costs recomputed when they return to the top of
the priority queue, resulting in fewer extraneous cost computa-
tions. For more computationally expensive error metrics, we have
also developed the Randomized queuing policy. The goal of the
Randomized policy is to allow the user to specify exactly how
many error evaluations will be performed per operation that is
actually applied. The user gives a desired ratio, R, of cost compu-
tations performed to operations applied. The algorithm randomly
chooses a maximal set of independent (non-overlapping) opera-
tions and computes their costs. If there are K operations in this
maximal set, we apply K/R operations. This approach trades
simplification quality for simplification speed.

The Error Metrics may be take many forms. For example the
sphere metric is a simple accumulation of bounding spheres
enclosing all the vertices that have merged to form the current
vertex. This is extremely fast and fairly memory efficient, but is
often extremely conservative. The quadric error metric [Garland
and Heckbert] can produce higher-quality results, but can be
slightly slower and does not produce a guaranteed error bound
(although if all of our objects use this same metric, their relative
errors may be compared). The texture error is appropriate for
textured meshes, but is somewhat slower and may not work well
for the most general triangle inputs.

As each operation is applied by the Simplifier, the Model and
the Hierarchy are updated by the Operator. The Operator then
informs the Queue of which of its neighboring Operators to add,
delete, or modify. The Simplifier continues to receive Operators
from the Queue and apply them until the Queue is empty. It then
tells the Hierarchy to finalize its output and is done.

7.2 Component Interactions
The above discussion presents what amounts to the standard
bottom-up simplification algorithm as seen from the point of view
of component objects. The procedure relationships among the
components are depicted in Figure 2. We can see three fan
relationships (Model-Input, Model-Operator, and Queue-
Operator). These indicate, for example, that the Model component
needs to have one piece of code for each type of Input component
and for each type of Operator component. Similarly, each type of
Operator component must have specific code that deals with the
base type of Queue (but not with each specific type of Queue).

Whereas the inter-relationships of the Input, Model, Simplifier,
and Queue components are well-behaved, we can clearly see three
crossbar relationships among the Operator, Error Metric, and
Hierarchy components. For example, to add a new Operator to our
system, we must implement a routine to interact with Model, a
routine to interact with Simplifier, a routine to interact with
Queue, and routines to interact with each specific type of Error
Metric and Hierarchy.

These crossbar relationships are problematic for scaling to large
numbers of specific types, but several observations can help us
reduce this burden. First, several of the Error Metrics may agree
on a type of output value, such as geometric object-space devia-
tion. This can effectively reduce the crossbar relationship between
Error Metric and Hierarchy to a fan relationship. Second, we can
observe that many Operator types are of the same class. Two of
those listed are vertex merges which produce new output vertices,
and two are vertex merges that retain one of the input vertices.
This can provide a good deal of code sharing within each of the
remaining crossbars. Finally, we can always add components
without supporting the full Cartesian product of component
combinations. Such cases can report an error and revert to some
default component.

8 EFFICIENT VIEW-DEPENDENT LOD
Inherent in the design of GLOD is the need for efficiency in both
simplification and rendering. This goal is especially challenging
for view-dependent LOD, particularly with regard to rendering.
Indeed, view-dependent simplification (VDS) has become
synonymous with slow rendering in the minds of most graphics
practitioners: clever but not very practical. Conventional wisdom
holds that VDS is appropriate only for very large continuous
surfaces, such as terrains or scanned datasets. The reason behind
this perception is a mismatch with current graphics hardware: the
typical approach to view-dependent simplification maintains the
active representation of a mesh as a linked list of primitives to
facilitate incremental adaptation [Luebke and Erikson
1997][Hoppe 1997][Pajarola 2001], or continuously regenerates
the simplification from the underlying vertex hierarchy
[Duchaineau et al. 1997][Lindstrom and Pascucci 2001]. In both
cases the geometric data is stored in main memory and issued to
the graphics hardware in immediate mode, limited by CPU load,
driver function call overhead, and the efficiency of the bus
carrying the data to the GPU.

Nonetheless, we believe view-dependent simplification repre-
sents a core element of LOD; VDS offers superior fidelity to
discrete LOD for a given triangle count and is mandatory for
certain datasets, such as terrains and very large unorganized
isosurfaces. As a primary contribution of this paper, we present a

8

new method for view-dependent mesh simplification that supports
drastically more efficient rendering. Our technique is encapsu-
lated in the standalone VDSlib library, which has been co-
developed and co-designed with GLOD over the past year.

8.1 More Efficient Rendering
The key concept behind VDSlib’s efficient rendering is to cache
simplification results in coherent vertex arrays. Indexed vertex
arrays are the highest-performance rendering path in modern
graphics cards. They provide excellent issue efficiency, exploit
the post-transform vertex cache, and allow data to change without
requiring additional setup costs. Caching the adapted mesh in a
coherent array enables the use of vertex array rendering. The
arrays are effectively write-only buffers, which means we can
even store them in AGP or video memory for still faster rendering.
We use the Vertex Array Range (NVIDIA), Vertex Array Object
(ATI), or, most recently, the Vertex Buffer Object ARB OpenGL
extensions for this purpose. We map this buffer directly into the
client address space and write updates directly to it as the mesh is
adapted. We have found that this usage pattern is not signifi-
cantly slower than writing updates to a buffer in system memory.
We also organize this buffer as a set of interleaved arrays to
further increase write performance.

Another long-standing technique for increasing rendering effi-
ciency is to create triangle strips from the mesh to be rendered.
Even taking into account the per-frame cost of building the strips
as the underlying mesh changes, Hoppe and more recently [Shafae
and Pajarola 2003] have shown that triangle stripping can im-
prove rendering performance of view-dependent LOD. However,
since we use indexed vertex arrays, the gains from triangle
stripping—a reduction in the number of indices sent to the GPU,
rather than in the number of vertices—are relatively small. Thus
in our current implementation we do not currently employ this
optimization, but it seems to be an obvious next step.

8.2 The VDSlib Hierarchy
VDSlib uses a generalized vertex hierarchy which supports many
different simplification methods, such as half edge-collapses, full
edge-collapses, and n-way merges of an arbitrary number of
vertices. This hierarchy has the structure of a tree, with the
vertices of an original model making up the leaf nodes at the
bottom of the tree. Nodes above the leaf nodes are created by
simplification operations collapsing two or more nodes into a
single new "parent" node. An active representation of the simpli-
fied model comprises a path, or cut, across this vertex hierarchy,
where the nodes on the path make up the vertices of the represen-
tation. At any point on this cut, a node may be split apart, or
unfolded, into its child nodes, increasing detail in that node's
region of the model; alternatively, if all of the children of a node
are on the cut, they can be collapsed together, or folded, into their
parent node, reducing detail in that node's region of the model.
Thus, by continually folding and unfolding nodes in the appropri-
ate regions of the cut, we can adjust the representation to the
current viewing parameters, accomplishing view-dependent level
of detail.

VDSlib's hierarchy of nodes is called a forest. This structure
represents an object that is using continuous level of detail; a cut
in VDSlib represents an instance of an object at a particular
simplification state. A GLOD object instance is divided into
patches, which are rendered independently of each other; likewise,
a VDSlib cut's triangles are divided into patches, which are
rendered separately. Because more than one instance of an object
can be created, data specific to a cut must not be in the forest
hierarchy. The hierarchy and its store of geometric data are not

modified at runtime - all data that change as simplification takes
place are associated with each cut. More than one cut can thus be
associated with each forest, efficiently implementing compatibility
with GLOD's capacity for instancing.

8.3 Simplification Procedure
The typical approach to view-dependent simplification is thresh-
old based: each frame, a process traverses the front of active
primitives, for each one calculating a view-dependent error1 and
locally refining the primitive if this error is above some threshold
value. To support simplification to a triangle budget, however,
we use a dual-queue system similar to that of ROAM [Duchaineau
et al. 1997]. We maintain the active nodes--all nodes that are
eligible to be unfolded--in a priority queue, sorted on their error;
we call this queue the unfold queue. We also maintain a priority
queue, sorted on node error, of all nodes that are directly above
the active cut; these are all nodes that are eligible to be folded,
and this queue is called the fold queue. To unfold a node, we
choose the node on the top of the unfold queue; of all nodes
eligible for unfolding, this node is contributing the most error to
the model representation. Similarly, of all the nodes eligible for
folding, the top of the fold queue will introduce the least error
into the representation when folded. Simplification to a triangle
budget is as simple as folding or unfolding until the target triangle
count is reached. Threshold simplification is supported by folding
or unfolding until the target error threshold is reached. If we wish
to simplify a group of objects to a triangle budget or an error
threshold, we maintain only a single unfold queue and a single
fold queue for the entire group; nodes from each of the objects
reside in each queue. In this way, we can simplify to the target
while balancing the error of each object in the group against the
errors of the other objects. We can even support simplification
with both a triangle budget and an error threshold target, where
simplification terminates when either of the targets is reached.
This mode is particularly useful when GLOD is simplifying a
group containing both discrete and continuous LODs to a budget
(described further in section 6.1).

Whenever a node becomes active, we cache the geometric
information for the vertex it represents in a vertex array and keep
track of its index or ref in the vertex array. When that node is
deactivated, we record its ref in a free list, denoting that that slot
in the vertex array is not being used. We do not need to modify
the vertex array at this time, because no triangles are going to
reference the inactive vertex. When activating vertices, we first
check the free list to see if any unused slots are available in the
used section of the vertex array, and if not we simply add the
vertex onto the end.

8.4 Support for Patches
Because objects can comprise multiple patches that use different
rendering state and have replicated vertices at their boundaries,
VDSlib must support simplification of these patches without
introducing cracks or overlap. When the forest hierarchy is being
built, the nodes corresponding to shared vertices are tagged as
coincident nodes--nodes which share a location, but differ in one
or more other characteristics (such as texture coordinates or
normals). When boundary nodes of one patch are merged
together, their coincident nodes in the adjacent patch are also
merged together, and the two parents are made coincident with
each other. During simplification, a fold or unfold of a node N

1 This error can also take into account whether the primitive is in the view
frustum; in GLOD, primitives found to be outside the view frustum are
assigned an error of zero, meaning that they can be drastically simplified
without affecting the error of the rendered scene.

9

immediately triggers the same operation on any nodes with which
N is coincident. This simple mechanism synchronizes the simpli-
fication of adjacent patches. The exception to the rule of coinci-
dent child nodes having coincident parents is when all remaining
nodes of a patch are being merged together; in this case, their
parent node is made to belong to an adjacent patch, and is not
coincident with any other node from that patch. This allows an
entire patch to be simplified away and later reintroduced, a
property of great benefit when a complex multi-patch model is far
from the viewpoint or otherwise requires a very coarse LOD.

8.5 Interruptible Simplification
Because each simplification operation on a node in the fold or
unfold queues (or set of simplification operations on a set of
coincident nodes) is independent of any others in that queue, we
can interrupt the simplification process before it has reached its
target budget or threshold and still be guaranteed a valid represen-
tation to render. This is useful in cases where an abrupt camera
movement or sudden change in adaptation target results in a large
volume of simplification needing to take place. If this entire
volume of simplification is performed in a single adapt call, it may
cause a noticeable pause in the application. Instead, we put a
limit on the maximum number of simplification operations that
can be performed during an adapt call. This will spread the
volume of simplification out over a number of frames, allowing
the application to maintain a reasonable framerate over this
period. The simplification may t>ake longer to complete than if
done all in one frame, but assures interactivity throughout.

9 PLANNED EXTENSIONS TO GLOD
Not all LoD problems can be solved in GLOD. Sometimes, this is
a limitation of our implementation --- for example, terrain render-
ing or out-of-core LoD. Other problems, it seems, cannot be easily
solved within GLOD at all: these problems are usually those that
require more sophisticated access to OpenGL state. Here, we
discuss the issues in extending GLOD's functionality to these
domains.

Terrains (and other regular geometry) are fully supported in the
present implementation of GLOD. However, the regular nature of
the input geometry allows many optimizations that make its
rendering far more efficient than unorganized meshes. As a result,
it makes sense for GLOD to include a rendering module for
regular geometry. As can be seen in the implementation section,
this presents no challenge for us as GLOD programmers: GLOD
is designed for the addition of new external modules, as was
shown by our support of the VDS module. However, the real
challenge is wedging regular geometry into the GLOD framework:
vertex arrays are not necessarily the most efficient way to repre-
sent terrain --- heightfields, for example, are more natural ways to
store this geometry. Rather than changing the interface to GLOD,
however, we believe that the way to address this is by setting state
on the object after it is created but before the patches are inserted:
for example, the user might be required to set
GLOD_GRID_WIDTH/HEIGHT before calling glodInsertArrays.
Beyond this sort of technical discussion, there should be no real
technical limitation to adding terrains to GLOD.

Out-of-core rendering, while a giant problem in itself, should
conceptually be possible within the GLOD framework. The main
reason here is that the out-of-core process still consists (largely)
of input data, a pre-processing step which we would bind to
adaptation, and a real-time rendering phase. The real challenge in
implementing this in GLOD is that this problem requires file-I/O
which does not map well to the GLOD interface. The logical way
resolve this problem is either using memory mapping or file

pointers. The first option, of course, still limits the problem to the
computer's addressable memory space. A more scalable solution is
to avoid the vertex array interface entirely, using GLOD the
get/set interface to pass file-pointers in and out of GLOD. Another
challenge with implementing out-of-core problems in GLOD is
that vertex programs, which are being used to accelerate transfer
of geometry to the graphics card, cannot be used by the renderer
because GLOD guarantees that it will not touch OpenGL state.

Many specialized LoD problems these days want to affect
OpenGL state. For example, texture impostors and image-based
LoD need to load textures into OpenGL for their rendering phase.
GLOD guarantees that its main routines will not affect OpenGL
state. We can, in order to support more advanced LoD features,
loosen this requirement for special hierarchy types under the
following restriction: the user should explicitly enable some
GLOD option (on a per-object basis using the get/set interface)
that might, for example, cause well-understood state changes to
take place as a result. The controlling idea here is that basic
GLOD will still "not affect" OpenGL state unless directly told to
do so by the user.

A number of non-geometric uses of GLOD might eventually
become possible with further implementation. For example, the
builder interface of GLOD might ultimately be fitted with an
optimizer that would allow dynamic optimization of vertex arrays.
This same module might be used internally by GLOD as well, or
externally using the readback mechanism by applications. This
sort of application, too, fits well into the GLOD interface.

10 FUTURE WORK
GLOD is designed—both as a system and as an API—to support
hierarchy types beyond the basic ones that we have implemented
thus far. Bringing some of these hierarchies and algorithms into
GLOD is a matter of programming rather than technical limita-
tion. However, some advanced approaches to LOD present real
challenges because they come in conflict with our basic API
design and rules. Here, we discuss how GLOD can be made to
work in these domains without changing the API.

Terrains (and other regular geometry) are supported in the
present implementation of GLOD using the catch-all XBS
simplifier. The main challenge in efficiently inserting terrains into
GLOD is that vertex arrays clearly provide more data than
necessary to specify a terrain. We could add a new call for
inserting terrains, but better might be to address this with a
combination of parameter settings. For example, if the user inserts
regular-grid geometry, they could set the GRID_WIDTH/
HEIGHT object parameters before calling glodInsertArrays(name,
patch, GLOD_GRID,...). This sort of scheme could be used to
insert all sorts of regular geometry formats into GLOD.
Out-of-core rendering, while a difficult problem in itself, should
not present major conceptual hurdles within the GLOD frame-
work. The out-of-core process still matches the insert, build,
adapt, draw process that we have outlined so far. The challenge in
implementing such a system in GLOD is that the input and
intermediary steps are file-specific stages in the system, and
OpenGL does not deal with files. The logical way resolve this
problem is either using memory mapping or file pointers. Neither
completely solves the problem they limit us to the computer's
address space. Furthermore, depending on the memory mapping
policy of the operating system, GLOD might consume the entire
available memory before pages begin getting kicked out of RAM
again. A more scalable solution is to avoid the vertex array
interface entirely, using GLOD the get/set interface to pass file-
pointers in and out of GLOD.

Many specialized LoD problems these days want to read or
affect OpenGL state. For example, texture impostors and image-
based LoD need to load textures into OpenGL for their rendering

10

phase. We can, in order to support more advanced LoD features
that exhibit this behavior, relax our state alteration guarantee: in
order for GLOD to alter OpenGL state, some parameter should
be manually set by the user. This guarantees that the unsuspecting
user will never see state changes, but the advanced developer has
the power necessary to cause them to happen.

Finally, we can extend the GLOD API into several fundamental
new directions. If we ignore the rendering components of the
GLOD API, it exports a very clean interface for geometry pre-
processing and manipulation. This interface is easily adapted to a
wide variety of algorithms ranging from vertex order optimization
to parameterization.

11 CONCLUSION
The GLOD system that we have presented here is unique in
several ways. GLOD goes to great lengths to present a low-level
interface to LOD. This is good for GLOD users: adoption of LOD
is easy, yet powerful and above all else, hardware oriented. Users
do not have to reconcile the LoD system against their graphics
driver and their program model. From the perspective of LOD
researchers, our approach has many gains: GLOD is able to
abstract the LOD pipeline without breaking hardware compatibil-
ity, and therefore provides an ideal model for new LOD libraries
as well. The GLOD system can be extended to support new LOD
algorithms, making it a good way to deploy LOD code. Finally,
GLOD is an experiment in aligning LOD algorithms with the
cutting edge in graphics hardware: can we balance abstraction
against speed? GLOD, its API and its implementation, shows us
how it can be done.

12 BIBLIOGRAPHY

OpenGL Optimizer Programmer's Guide: An Open API for Large Model Visualiza-

tion. pp. 250 pages.
Ciampalini, A., P. Cignoni, C. Montani, and R. Scopigno. Multiresolution decimation

based on global error The Visual Computer vol. 13 (5). 1997 pp. 228-246
Cohen, Jonathan, Amitabh Varshney, Dinesh Manocha, Gregory Turk, Hans Weber,

Pankaj Agarwal, Frederick Brooks, and William Wright. Simplification Enve-
lopes. Proceedings of SIGGRAPH 96. pp. 119-128.

Duchaineau, M, M Wolinsky, D E Sigeti, M C Miller, C Aldrich, and M B Mineev-
Weinstein. ROAMing Terrain: Real-time Optimally Adapting Meshes. Proceed-
ings of Visualization '97. pp. 81-88.

Funkhouser, T. A. and C. H. Sequin. Adaptive Display Algorithm for Interactive
Frame Rates During Visualization of Complex Virtual Environments. Proceed-
ings of SIGGRAPH 93. pp. 247-254.

Garland, Michael and Paul Heckbert. Surface Simplification Using Quadric Error
Metrics. Proceedings of SIGGRAPH 97. pp. 209-216.

Hoppe, Hugues. Efficient Implementation of Progressive Meshes. Computers &
Graphics. vol. 22(1). 1998. pp. 27-36.

Hoppe, Hugues. Progressive Meshes. Proceedings of SIGGRAPH 96. pp. 99-108.
Hoppe, Hugues. View-Dependent Refinement of Progressive Meshes. Proceedings of

SIGGRAPH 97. pp. 189-198.
Humphreys, et al. Chromium: A Stream Processing Framework for Interactive

Graphics on Clusters. Proceedings of SIGGRAPH 2002.
Lindstrom, P and V Pascucci. Visualization of Large Terrains Made Easy. Proceed-

ings of Visualization 2001. pp. 363-370 and 574.
Lindstrom, Peter. Out-of-Core Construction and Visualization of Multiresolution

Surfaces. Proceedings of 2003 Symposium on Interactive 3D Graphics. pp. 93-
102.

Luebke, David and Carl Erikson. View-Dependent Simplification of Arbitrary
Polygonal Environments. Proceedings of SIGGRAPH 97. pp. 199-208.

Luebke, David, Martin Reddy, Jonathan D Cohen, Amitabh Varshney, Benjamin
Watson, and Robert Huebner. Level of Detail for 3D Graphics. Morgan Kauf-
mann Publishers, San Francisco. 2002. 390 pages.

Luebke, David, Martin Reddy, Jonathan D Cohen, Amitabh Varshney, Benjamin
Watson, and Robert Huebner. Level of Detail for 3D Graphics. Morgan Kauf-
mann Publishers, San Francisco. 2003. 390 pages.

Morhr, Alex and Michael Gleicher. Non-Invasive, Interactive, Stylized Rendering.
Proceedings of the 2003 Symposium on Interactive 3D Graphics. March 2001.

Niederauer, Christopher, Mike Houston, Maneesh Agrawala, and Greg Humphreys.
Non-Invasive Interactive Visualization of Dynamic Architectural Environments.
Proceedings of the 2003 Symposium on Interactive 3-D Graphics. pp. 55-58.

Pajarola, Renato. FastMesh: Efficient View-Dependent Meshing. Proceedings of
Pacific Graphics 2001. pp. 22-30.

Rohlf, John and James Helman. IRIS Performer: A High Performance Multiprocessing
Toolkit for Real-Time 3D Graphics. Proceedings of SIGGRAPH 94. July 24-
29. pp. 381-395.

Rossignac, Jarek and Paul Borrel. Multi-Resolution 3D Approximations for Rendering
Complex Scenes. Technical Report RC 17687-77951. IBM Research Division,
T. J. Watson Research Center. Yorktown Heights, NY 10958. 1992.

Schroeder, Will, Ken Martin, and Bill Lorensen. The Visualization Toolkit, An Object-
Oriented Approach To 3D Graphics. Prentice Hall 1998. 645 pages.

Shafae, Michael et al. DStrips: Dynamic Triangle Strips for Real-Time Mesh
Simplification and Rendering. Proceedings Pacific Graphics Conference, 2003.

Wernecke, J. The Inventor Mentor: Programming Object-Oriented 3D Graphics with
Open Inventor(TM), Release 2. Addison-Wesley, Reading, MA. 1993.

