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Abstract 
We present GLOD, a geometric level of detail system integrated 
with the OpenGL rendering library. GLOD provides a low-level, 
lightweight API for level of detail operations. Unlike heavyweight 
scene graph systems, GLOD supports incremental adoption and 
may be easily integrated into existing OpenGL applications.  
GLOD provides a simple path for developers to add level of detail 
to their system, while retaining a minimalist close-to-the-hardware 
approach compatible with high-performance rendering and future 
evolution of the base OpenGL layer. 
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1 INTRODUCTION 
Level of detail (LOD) techniques are widely used today among 
interactive 3D graphics applications, such as CAD, scientific 
visualization, virtual environments, and gaming. The field of LOD 
has grown quite mature [Luebke et al. 2002]. For example, many 
excellent algorithms exist for LOD generation, or creating 
simplifications of polygonal meshes; they range from fast and 
simple to slow but sophisticated, and the resulting simplified 
models (themselves called levels of detail or LODs) range from 
crude to excellent.  A wide gamut of techniques have also been 
presented for LOD adaptation, or the run-time task of adjusting 
the level of detail to respond to changes in the scene (such as 
movement of the viewpoint or objects) while balancing detail with 
performance.  These range from simple distance-based approaches 
that select one of a set of discrete LODs to elaborate view-
dependent LOD methods that perform fine-grained adaptation of 
the polygonal tessellation on the fly. 

Probably almost every high-performance interactive graphics 
application or toolkit built in the last five years utilizes LOD to 
trade off visual fidelity for interactive performance.  However, no 
widely accepted programming model has emerged as a standard 
for incorporating LOD into programs. 

In this paper we present GLOD, an open source tool for geo-
metric level of detail that provides the full LOD pipeline in a 
lightweight and flexible application programmer’s interface (API). 
This API is a full-featured, powerful, extendible, yet easy-to-use 
LOD system, supporting discrete, continuous, and view-
dependent LOD, multiple LOD generation algorithms, and 
multiple LOD management modes. GLOD is not a scene graph 
system; instead, it is an API integrated with OpenGL, an existing 
and popular low-level rendering API. With this formulation, we 
can start to think of geometric level of detail as a fundamental 
component of the graphics geometry pipeline, much as mip-
mapping is a fundamental component for controlling detail of 
texture images. 

2 RELATED WORK 
Existing level of detail tools generally fall into three categories: 
discrete mesh simplifiers, continuous and view-dependent 
systems, and scene graph toolkits. In this paper and throughout 
GLOD we use the terminology from Luebke et al. [Luebke et al. 
2002]: discrete LOD refers to the creation of several static levels 
of detail which are swapped out directly for each other, continu-
ous LOD creates a progressive data structure from which it can 
extract a continuous spectrum of detail at run-time, and view-

dependent LOD extends continuous LOD by creating a hierarchi-
cal data structure from which it extracts a mesh tailored to the 
given viewpoint. GLOD supports all three LOD approaches. 

Discrete mesh simplifiers, such as QSlim [Garland and Heck-
bert 1997], Simplification Envelopes [Cohen et al. 1996], and 
Jade [Ciampalini et al. 1997 ], address LOD generation but not 
LOD management.  In other words, these tools take a complex 
object and generate simpler discrete LODs, but do not attempt to 
address run-time adaptation of those LODs to meet interactive 
goals such as a triangle budget or error threshold. In fact many 
simplifiers do not even provide error bounds for use during 
adaptation, meaning a developer or artist must decide manually at 
what distance the LOD is appropriate.  Furthermore, programmers 
using a mesh simplifier must convert their model data to and from 
the tool’s format; this can be problematic if the simplifier does not 
support all the attributes required by the programmer’s models.  
Experimenting with different simplifiers typically requires even 
more converting back and forth between formats. One strength of 
GLOD is its use of OpenGL vertex arrays as a unified geometry 
interface—by design capable of expressing any attributes the user 
may wish to render—for input and output to many different 
simplification algorithms. 

Continuous and view-dependent LOD systems do address LOD 
management to some degree, since they are capable of extracting 
and rendering meshes at run-time. Hoppe’s Progressive Meshes 
(PM) algorithm [Hoppe 1996, Hoppe 1998] deserves special 
mention because it has been integrated into Microsoft’s DirectX 
API, providing developers with some of the transparency benefits 
that GLOD offers. However, PM, like other continuous LOD 
algorithms, limits the user to specifying the number of vertices or 
triangles desired; it does not attempt to manage the level of detail 
to minimize error or satisfy a triangle budget, so the task of LOD 
management still falls to the developer.  View-dependent systems 
allocate detail amongst different portions of an LOD, but still do 
not address the problem of allocating detail amongst different 
objects. Furthermore, some view-dependent algorithms, such as 
FastMesh [Pajarola 2001] and [Lindstrom 2003], do not support 
rendering to a budget, but only an overall error threshold.  Also 
note that many view-dependent algorithms target only the special-
ized domain of terrain simplification [Lindstrom and Pascucci 
2001][Duchaineau et al. 1997]. 

Scene graphs toolkits such as Open Inventor [Wernecke 1993], 
OpenGL Performer [Rohlf and Helman 1994], and OpenSG 
perform LOD management, but they provide heavyweight “all or 
nothing”  solutions that lump LOD in with myriad other aspects of 
an interactive computer graphics system: hierarchical transforma-
tions and instancing, view-frustum culling and visibility, memory 
management and paging, and so on. They do not perform LOD 
generation, but some have external utilities such as OpenGL 
Optimizer  to perform the generation. OpenGL Performer [Rohlf 
and Helman 1994], for example, is a powerful and well-written 
library for high-performance rendering. It has a rich set of LOD 
management and rendering options, such as blended transitions 
and feedback-guided frame rate control. It even incorporates 
support for a restricted form of view-dependent simplification. 
But a developer wishing to use Performer for LOD must use the 
full set of Performer scene graph constructs, and indeed must 
build his or her entire interactive graphics system on Performer, 
from the ground up. Often this requirement is too restrictive or 
inappropriately burdensome, and instead the developer ends up 
with a different burden: creating yet another custom LOD system. 
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Another large and powerful system, the Visualization Toolkit 
(VTK) [Schroeder et al. 1998], is not a scene graph but does 
provide support for both generation and management of level of 
detail. It provides multiple generation algorithms and a target 
frame rate mode based on measured rendering time for the various 
LODs. However, although this extensive toolkit allows easier 
incremental adoption than the scene graph systems, it still wraps 
all aspects of the underlying graphics API in a higher level 
abstraction, making it harder for the application to directly control 
and access the lower level rendering state.  VTK is not intended to 
be a tool for the OpenGL developer, but a higher-level tool for 
rapid design of visualizations. 

3 DESIGN GOALS 
GLOD aims to cover the full gamut of LOD generation and 
management tasks, from discrete mesh simplification to run-time 
adaptation of discrete, continuous, and view-dependent LOD. 
However, GLOD follows an entirely different design philosophy 
from existing systems. The GLOD interface more closely resem-
bles a driver-level extension of the graphics API than a high-level 
application toolkit. This distinction, which may at first seem 
subtle, leads to profoundly different usage patterns.  

We have designed and implemented GLOD with the following 
goals in mind: 

• Functionality: The system should support the many ways that 
geometric level of detail is used in production graphics applica-
tions. It should provide a rich set of options for LOD genera-
tion (including manual LOD generation by artists) and LOD 
management, and be flexible enough to handle a variety of 
application usage patterns. 

• Ease of adoption: GLOD should be easy to use and easy to 
incorporate into existing applications. It should support incre-
mental adoption so that applications retain as much control as 
they desire. 

• High performance: GLOD should not sacrifice performance 
for flexibility. For every type of performance-critical LOD task, 
the API must support a way to achieve that task in a high-
performance fashion. 

• Longevity: Graphics hardware and associated APIs are con-
tinuously evolving. The GLOD API should support current 
development trends, such as increased programmability in the 
hardware, and avoid relying on features that seem likely to go 
away in future hardware. 

• Robustness: The system should be able to work with arbitrary 
real-world models in the presence of real-world problems such 
as degenerate triangles, non-manifold topology, and coincident 
geometry. Note that it may also provide specialized modes for 
better performance on models with known properties, such as 
terrains or closed manifold meshes. 

• Extensibility: GLOD should be easy for developers to extend 
by adding new general simplification algorithms, or special-
case algorithms intended to handle particular situations (e.g., 
terrains). 

4 DESIGN DECISIONS:  

4.1 Use Minimal Structure 
Minimizing the structural complexity of the underlying system 
helps keep the API clean, broadly applicable, and easy to adopt. 
The conventional design of a library supporting level of detail 
stores the complete scene graph, a hierarchy of objects organized 
by spatial and functional relationships. Objects are nodes in the 

hierarchy, each consisting of one of more connected polygonal 
meshes (often subnodes in the hierarchy). Different portions of 
each mesh may in turn be split into submeshes, or patches, that 
require different rendering states (for example, different textures). 
In this framework, LODs might be implemented as a series of 
sibling nodes at the object level, with some mechanism to select 
which LOD to traverse during rendering. An LOD system pre-
sented with this structure is aware of and has control over the 
entire rendered scene. Is such a hierarchical scene graph the 
minimal structure necessary to support level of detail? We argue 
that full LOD functionality can be achieved with less structural 
overhead. GLOD is very consciously not another scene graph 
system, and in fact does not even include a full-fledged notion of 
hierarchy.  

What then are the minimum structural requirements for creat-
ing, managing, and rendering multiple multiresolution objects?  
GLOD uses three basic structures: patches, objects, and groups. A 
patch is a collection of geometry that shares a common rendering 
state. Patches are the fundamental units of rendering in GLOD: 
each patch is rendered—potentially simplified from its original 
form—in its entirety with a single call. An object is a collection of 
patches, which may be connected portions of the same mesh (i.e., 
sharing vertices). Objects are the fundamental unit of mesh 
simplification in GLOD: all patches within an object are simpli-
fied together to form a multiresolution hierarchy. Objects may be 
instances, which are duplicated versions of objects that are 
simplified individually. A group is a collection of objects, some of 
which may be instances. Groups are the fundamental unit of 
adaptation in GLOD: the objects in a group can be adapted with a 
common goal in mind, such as an overall triangle budget.  

This structural design of patches, objects, and groups was mo-
tivated by consideration of several questions, which we revisit 
here as they provide insight to our design and design process. 

Do we need patches? Clearly the user must be able to vary 
some aspects of rendering state, such as texture map or shader 
bindings, across objects. The patch structure is motivated primar-
ily by the pragmatics of high performance rendering. The basic 
primitive for fast rendering on current hardware is a large indexed 
array of vertices. Any rendering engine intending to achieve high 
performance on modern graphics hardware must issue as many 
vertices as possible without changing graphics state, which incurs 
a call to the driver and a pipeline flush. In addition, the library 
should keep those vertices as “close”  as possible to the hardware, 
storing them in fast-access AGP memory or even remotely in on-
card video memory to maximize throughput to the GPU. Using 
patches to “clump” geometry into batches enables GLOD to use 
the coarse-grained dataflow required for high-performance, while 
allowing the user to vary rendering state across that geometry. 

Do we need objects? Since the rendering state (e.g. active 
texture map) often varies between adjoining sections of a single 
mesh, meshes will often comprise multiple patches. Simplifying 
each patch individually would lead to cracks along their bounda-
ries—a well-known problem in mesh simplification. Aggressive 
simplification algorithms (e.g. [Rossignac and Borrel 1992], 
[Garland and Heckbert 1997]) can even merge vertices from 
separate meshes within an object. We need a structure above the 
patch level that defines which patches and which vertices are to be 
simplified jointly.  

Do we need groups? Patches and objects alone are not suffi-
cient to implement global goals, such as adapting a set of objects 
to meet a total triangle budget. Adapting to a budget requires 
global knowledge, generally treating the cost and visual benefit 
(or error) associated with all levels of detail as input to an optimi-
zation process [Funkhouser and Sequin 1993]. The GLOD library 
has this knowledge, but the application typically does not. If 
budget adaptation were implemented at the application level, the 
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application would have to continuously query the library for each 
LOD’s cost and benefit. This requires a ruinous number of API 
calls and places a considerable burden on the application pro-
grammer. Furthermore, certain optimizations, such as moving 
LOD geometry into fast on-card video memory, will be expensive 
or impossible if the application must make many calls to adapt 
each LOD each frame. So we chose to add another layer of 
abstraction—groups—to allow the user to specify simplification 
goals and budgets across multiple objects. 

Do we need instances? Often an object must be rendered mul-
tiple times per frame with different transformations, for example 
during geometry instancing or rendering with shadow mapping. 
Clearly this re-rendering is a common and vital technique in 
interactive rendering, but must we explicitly address it in the 
GLOD API? In principle one could simply adapt the object and 
render its patches multiple times per frame, once per instance of 
the object. In practice, efficient rendering, adaptation, and 
memory use dictate explicit support for instancing. For example, 
adaptation of a continuous LOD often begins from the previous 
frame’s LOD and makes only incremental changes, but repeatedly 
adapting the LOD to completely different transformations de-
stroys this coherence and becomes much more expensive. Another 
option is to duplicate the object for each instance, but this can be 
prohibitively wasteful of memory. Thus it seems an instancing 
mechanism is a necessary feature of an LOD API. Instancing in 
GLOD provides a unique copy of the object’s simplification state 
while sharing the same underlying geometry storage. In keeping 
with our minimalist approach to the API, we were careful to add 
this capability without making instances their own first-class 
entity: instances are simply objects created with glodInstanceOb-
ject() instead of glodBuildObject(). 

Do we need additional hierarchy? Objects can collect multi-
ple patches and groups can collect multiple objects. We consid-
ered letting groups collect other groups, much as OpenGL display 
lists can call other display lists. This would give GLOD the 
expressive power of a scene graph, able to encode very general 
hierarchies of detail. However, it can also complicate the logic for 
adaptation, for example if the user-specified triangle budget for a 
group exceeds that of its parent. Nor is it clear that adding 
hierarchy provides additional optimization opportunities for 
efficient rendering. The major efficiency benefits of a scene-graph 
organization, such as view-frustum culling and sorting by render-
ing state to minimize state changes, may still be performed if 
appropriate, even by incorporating GLOD into an existing scene 
graph. On the other hand, the lack of enforcement of a pre-
determined GLOD scene graph structure on the application 
simplifies the adoption of GLOD or its integration into an existing 
application. Having decided consciously not to make GLOD into 
yet another scene graph engine, we affirmed that decision by 
avoiding the temptation to permit additional layers of hierarchy 
beyond the minimal requirements of patch, object, and group 
structures.  

Can we render groups/objects? Since objects consist of 
patches and groups consist of objects, it would undoubtedly be 
convenient at times to render an entire object or an entire group 
with a single call. However, this fails our principle of minimalism. 
A hypothetical “glodDrawObject”  or “glodDrawGroup”  
command could be implemented using the glodDrawPatch 
command, however, neither is strictly necessary and thus neither 
belongs in a minimal LOD library. In fact, the decision to expose 
LOD rendering at the individual patch level is an important 
distinction from scene graph libraries. It puts control of the entire 
rendering state in the hands of the application, and frees GLOD 
from tracking anything except the minimum required to issue 
geometry. 

4.2 Follow the Red Book Road:  
The OpenGL Way 

GLOD builds on, draws inspiration from, and coexists cleanly 
with OpenGL. This has several advantages: First, by building on 
an industry standard, we base our system on a robust developer-
backed system that is guaranteed to stay up-to-date as graphics 
technology changes. Second, the use of the OpenGL brings along 
with it a programming model with which users are accustomed 
and comfortable. Most importantly, OpenGL brings along a 
design philosophy that can be used to guide the complex decision 
processes of generating a general purpose geometric level of detail 
API. 

The lightweight procedural interface of OpenGL suits our mini-
malist approach to LOD management better than a full-featured 
object-oriented system such as Performer or VTK. These are 
excellent toolkits, powerful and well-designed, but both are big, 
full-fledged systems best used “whole hog” ; it is difficult to adopt 
Performer, for example, into an existing rendering engine without 
starting from scratch. Our system is inspired instead by the 
minimalist procedural design of OpenGL, and looks to various 
aspects of that design for motivation. For example, the application 
can specifying individual level of detail surfaces much as it might 
load up individual image resolutions in the OpenGL MIP-
mapping interface. Similarly, the texture compression interface 
provides an example of preprocessing data: textures can be 
uploaded to OpenGL in a known format, processed by the library, 
and downloaded again in compressed binary form for later use.  

GLOD, like GLU and GLUT, sits alongside OpenGL and often 
directly calls OpenGL. Important examples of GLOD interaction 
with OpenGL include: 

• Reading vertex array pointers and state. 

• Reading matrices and viewport for view-dependent LOD (see 
section 8). 

• Caching geometry in GPU-side memory. 

We have articulated a handful of design rules to guide our 
interaction with OpenGL, aiming to maximize the predictability 
and usability of GLOD given its closeness to the underlying 
graphics library: 

• Use existing OpenGL calls and state whenever possible. For 
example, the application should not have to specify the camera 
twice, once to OpenGL and once to GLOD. Rather, it can ask 
GLOD at the appropriate time to grab its transformations from 
OpenGL. Similarly GLOD takes cues from the current client-
state as to which vertex attribute arrays should be captured to 
generate an object’s level of detail hierarchy. 

• Follow OpenGL calling conventions, data types, and stan-
dards. The user should not have to learn new data types when 
using GLOD. 

• Minimize the number of calls and components in GLOD that 
will be perceived as “ new”  to OpenGL. This rule is motivated 
by our goal that GLOD should be easy to adopt, a simple and 
straightforward extension. 

• Consider efficiency. Minimize interaction with OpenGL; even 
reading GL state can be costly. Similarly, avoid GL con-
structs—such as the glPushAttrib/glPopAttrib commands—
known to be expensive in practice. 

• Do not interfere with OpenGL state and semantics. This is a 
key guiding principal of GLOD.  

We expand on these principles and the resulting design decisions 
below. 
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4.2.1 Act Like OpenGL 
We build on OpenGL programming constructs, such as types and 
calling conventions, whenever possible to provide a consistent 
and familiar interface for the programmer. For example, we push 
the majority of GLOD state control behind an OpenGL-style 
Get/Set parameter interface. This leads to an interesting design 
choice worth mentioning: unlike OpenGL, GLOD has no global 
state. Instead, each instance of the three standard GLOD primi-
tives (patches, objects, and groups) has its own state controlled by 
get/set functions. (The lack of global state prevents us from 
putting various global controls on GLOD; for example, we cannot 
place a global memory budget on GLOD. However, such controls 
can still be enforced by the user.)  We also employ a naming 
mechanism for objects, patches, and groups inspired by GL 
texture namespaces.  

One especially noteworthy way that we leverage OpenGL is the 
use of vertex arrays as the geometry interface for GLOD. This is 
discussed further in Section 7. 

Having determined to model GLOD on OpenGL, an interesting 
design decision arises: Should GLOD become OpenGL in some  
fashion?  We considered three options: pretend to be OpenGL, 
propose an extension to OpenGL, or build a closely-coupled 
utility library tightly integrated with but separate from OpenGL.   

Pretend to be OpenGL: By intercepting OpenGL function 
calls and masquerading as the graphics driver, it is possible to 
non-invasively instrument, redirect, or otherwise manipulate 
OpenGL programs [Humphreys 2002, Mohr and Gleicher 2002, 
Niederaur et al. 2003].  The earliest stages of GLOD used Chro-
mium to intercept OpenGL commands and present the GLOD 
interface as if it was built directly into the graphics library (for 
example, allowing GLOD-specific parameters to be manipulated 
with the glGet/Set interface).  We felt that pretending to be the 
driver enforced the low-level close-to-the-hardware philosophy 
we desired: OpenGL does know anything about high-level 
organization of the scene that it is rendering. Operating at the 
driver level also has its conveniences; for example, it is a simple 
matter for a driver-level API to track the various matrices and 
rendering state that GLOD uses. Ultimately, however, we felt that 
pretending to be part of OpenGL was too unwieldy and would be 
difficult for developers to adopt.  Furthermore, the computation-
ally intense tasks in GLOD (such as mesh simplification) are 
larger, slower operations than are likely to be included in a real 
driver; these computations belong in utility libraries and toolkits, 
not the driver itself.   

Propose an extension: GLOD began as a draft proposal for an 
OpenGL extension.  As an extension, GLOD would have all the 
benefits just listed.  However, to convince a vendor that an 
extension is so valuable to be placed in the driver would require 
an extremely compelling demonstration of value, with an active 
user community clamoring for the new functionality.  The best 
way to build such a community, it seemed, was to build a stand-
alone utility library that established the value of a low-level 
geometric LOD toolkit. 

Build a closely-coupled utility library: As the API evolved, 
we realized that we could encompass the low-level minimalist 
approach to LOD without needing to be inside the driver. Though 
lacking direct access to some useful information about rendering 
state, positioning GLOD as an external library vastly simplifies 
deployment and adoption by researchers and developers interested 
in trying it out.  Ultimately if the graphics community embraces 
the concept of low-level geometric LOD, the ideas presented in 
this paper could move closer to the hardware and the base API in 
the form of vendor-specific extensions. 

4.2.2 Don’t Touch the Rendering State 
Since GLOD allows and requires the user to set up the rendering 
state before drawing patches, GLOD should have no side effects 
on OpenGL state besides the issuing of geometry.  During the 
design stage the temptation to let GLOD change the OpenGL 
rendering state was sometimes strong. For example, instantiated 
geometry will typically be transformed before being drawn, with a 
different transformation for each instance. A conventional LOD 
management system, built into a scene graph, will store and effect 
these transformations, saving the programmer the effort of 
explicitly performing the transformation. However, GLOD treats 
the GL state as sacred: no GLOD call should change the state as a 
side effect. Therefore,  while GLOD allows binding a transforma-
tion to an object, that transformation is used only for adaptation. 
The actual change to the GL matrices before drawing the patches 
of that object remains the application’s responsibility. Note that 
this also gives the user the freedom to separate adaptation and 
rendering transformation, for example to adapt the level of detail 
in a scene according to one camera position, then render the scene 
from another position—this is an important if occasional applica-
tion of LOD that can arise e.g. during shadow mapping and 
occlusion culling. 

In Section 4.1 we discussed how the hypothetical functions 
glodDrawObject and glodDrawGroup failed to satisfy the 
guiding principle of minimalism. These functions would also 
violate the key principle of noninterference, since the ability to 
draw a set of patches with a single call implies storing the render-
ing state of each patch and setting that state before rendering the 
patch.  

4.3 Use an Implicit Camera 
Most applications of level of detail need run-time knowledge 
about the scene.  In particular, degrading the detail of objects 
further from the viewpoint would seem to require global scene 
knowledge about the camera and  objects.  Specifically, we 
require the perspective projection parameters (field of view, 
aspect ratio, and so on), the position and orientation of the 
camera, and the position and orientation of each object. How can 
we capture this knowledge without a scene graph?   

There are several options. First, we could deal with the camera 
by providing functions for the user to explicitly set camera 
position, rotation, field of view, etc. as global properties of the 
scene. This is the traditional approach, storing all camera informa-
tion in a parametric representation.  However, this would place 
limitations on the camera – for example, if GLOD only provided 
the parameters used by the gluPerspective() function, we 
would be unable to support an off-axis viewing frustum.   

Another option is to track the OpenGL ModelView and Projec-
tion matrices and infer the camera parameters and camera-object 
transforms from these matrices.   This implies an API function for 
the user to tell GLOD when to apply the current matrices to a 
given object or instance. An earlier version of GLOD did in fact 
use this approach, analyzing the matrices to calculate viewpoint, 
view vector, up vector, field of view, etc.  However, this approach 
is still limited by the camera model built into GLOD and our 
ability to anticipate and reverse-engineer the different matrices a 
user might employ.   

A better option, which we ultimately settled on, is to use a 
completely implicit model of the camera and camera-object 
relations.  When the user binds the matrices to an object or 
instance, instead of inferring view parameters we can simply store 
the matrices with that object. When adapting the LOD groups, we 
can use these matrices directly, e.g. by transforming vertices from 
a bounding box into screenspace to estimate the object’s size.  
This method is somewhat more expensive than, for example, 
estimating the solid angle subtended by a bounding sphere given 
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known camera parameters, but it is much more general.  The 
screenspace size of objects can be estimated even in non-
perspective situations, such as an isometric projection or a planar 
“ fake shadow” matrix. 

5 GLOD 

The GLOD API is inspired by OpenGL and designed around the 
pipeline depicted in figure 1. Our system presents three modules: 
the hierarchy builder, the group manager, and the renderer. The 
API calls themselves can be separated into module-specific calls, 
data control calls, and setting calls. The benefit of this design is 
that it allows individual components of the system to be used 
autonomously – for example, using GLOD simply as a geometry 
simplifier with no management or rendering component. 

The most important set of calls in GLOD is the parameter inter-
face. These calls take the general form: 

glod[Object|Group]Parameter[if](name,pname,value); 
glodGet[Object|Group]Parameter[if]v(name,pname, 
*dat) 

These calls for GLOD objects and groups allow you to fully 
customize the behavior of GLOD.  As throughout the library, we 
consciously mimic the function names and conventions of 
OpenGL.   

Building objects 
glodNewObject(objname, format, grpname); 

glodInsertArrays(objname, patchname, mode,  
                 first, count, level, error); 
glodInsertElements(objname, patchname, 
                   mode, count, type, indices,  
                   level, error); 
glodBuildObject(objname); 
glodInstanceObject(objname, instname, grpname); 

Building a GLOD object is simple: you call glodNewObject to 
specifying a hierarchy type, a name, and a group. You then insert 
patches into the object by configuring OpenGL vertex arrays in 
the standard way and then calling glodInsertArrays as if 
you were calling glDrawArrays to render the patches. When all 
the patches are inserted into the object, you call glodBuildOb-
ject to turn the geometry into a multiresolution hierarchy. In 
effect, you are able to convert your fixed-resolution DrawArrays 
call into a multiresolution DrawArrays call in a few short steps. 

Our present implementation of GLOD can build discrete, con-
tinuous, and view-dependent hierarchies. All of our LOD genera-
tion is currently done using the XBS library (Section 7). Render-
ing of discrete LODs is done using an custom module, while run-
time adaptation and rendering of continuous and view-dependent 
LOD is provided using the VDSlib library (Section 8). Using the 
parameter interface above, one can configure the builder, for 
example, to use different error metrics for different objects, or to 
change between full and half-edge collapses. 

Managing Groups of Objects: 
glodBindObjectXform(objname); 
glodObjectXform(objname, float[16] m1,  
                float[16] m2, float[16] m3); 
glodAdaptGroup(grpname); 

Once an object is built, you must adapt it to a particular level of 
detail by calling glodAdaptGroup to a particular chosen goal. 

If you have chosen a screen-space-aware adaptation goal, then 
you must tell GLOD about the object and your camera. This is 
done either by specifying (up to) three transformation matrices 
using glodObjectXform, or by telling GLOD to automatically 
obtain the GL matrices using glodBindObjectXform. GLOD 
supports adaptation to different error measures (geometric, 
normal, even color- or texture-based in principle) in both screen 
space and object space. It also supports both screen-space and 
object-space triangle budgets. Finally, various limits can be set on 
adaptation to prevent GLOD from consuming too much band-
width and CPU during large changes in the cut. 

Rendering 
glodDrawPatch(objname, patchname); 

Preparing an object to be drawn represents most of the coding 
necessary to use GLOD. Once a patch has been adapted as part of 
a group, glodDrawPatch will actually issue its (simplified) 
geometry to draw it to the screen.  The behavior of this call is 
controlled by the OpenGL vertex array interface: to prevent 
GLOD from issuing certain attributes (normals, texture coordi-
nates, etc.0 from issuing, disable the corresponding OpenGL array 
states.  

Data Flow 
glodReadbackObject(objname, *data); 
glodLoadObject(objname, *data); 
glodFillArrays(objname, patchname, first); 
glodFillElements(objname, patchname, type, 
*elements); 

Simplification can be a time consuming process best performed 
offline, rather than for example during game startup. To do this, 
you first determine the size of the object’s readback buffer using 
the glodGetObjectParameter interface. You then allocate a 
buffer and pass that to glodReadbackObject. Loading of an 
object reverses this process. Readback is supported on all hierar-
chy types. 

Similarly, sometimes we may not want to render a patch, but 
rather read its adapted geometry back into our application. 
Consider, for example, the case of a command-line simplifier. 
You do this by building and adapting an object to some desired 
level and then determining its triangle count using the glodGe-
tObjectParameter interface. After allocating and binding the 
OpenGL vertex arrays to appropriate buffers, you call glodFil-
lArrays or glodFillElements, which copies the current 
geometry into the currently bound vertex array. 

Putting it All Together 
Below we show a simple usage of GLOD: render a 10,000-
triangle version of some model using view-dependent rendering. 
First, you set up your object: 
glodNewObject(0, 1, GLOD_CONTINUOUS); 
for(each patch in our object) { 
  ... bind the vertex array for this patch ... 
  glodInsertArrays(0, patch, GL_TRIANGLES, 0, 
                 num_verts, 0, 0); 
} 
glodBuildObject(); 
glodGroupParameteri(1, GLOD_ADAPT_MODE, 
                    GLOD_TRIANGLE_BUDGET); 
glodGroupParameteri(1, GLOD_ERROR_MODE, 
                    GLOD_SCREEN_SPACE_ERROR); 
glodGroupParameteri(1, GLOD_MAX_TRIANGLES,  
                    10000); 

Now, in your render loop: 
// get your camera & modelview matrix just  
// right 

Builder
Hierarchy Group

Manager

glodInsertElements
glodInsertArrays glodFillElements

glodFillArraysglodLoadObject
glodReadback

glodBuild glodAdaptGroup

Renderer

glodDrawPatch
glodObjectXform
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glodBindObjectXform(0, GL_PROJECTION_MATRIX | 
                    GL_MODELVIEW_MATRIX); 
glodAdaptGroup(1); 
 
for(each patch in the object) { 
  // bind texture & whatever else 
  glodDrawPatch(0, patch); 
} 

Of course, many variations on this theme are possible.  As 
discussed in Section 4.2, GLOD operates seamlessly with various 
advanced GL features ranging from fragment programs and 
custom vertex attributes to normal maps. This is largely because 
of our policy of not interfering with OpenGL state. Of course, full 
support of OpenGL sometimes has a caveat: geometric LOD is not 
meaningful for certain vertex programs, for instance. 

6 IMPLEMENTATION ISSUES 
From an implementation standpoint, the building, managing, and 
rendering modules are abstract concepts within the procedural 
GLOD API rather than being actual pieces of code. Internally, we 
map raw API calls on a per-object basis to routines linked in from 
other libraries. In effect, our GLOD implementation is a (large) 
body of routines that wraps pre-existing LOD libraries behind a 
single coherent interface. Because we have tried to build the 
GLOD API to meet the requirements of a wide variety of LOD 
algorithms, we must be able to wrap a large number of different 
LOD libraries behind this single interface, thus unifying the 
current chaos of LOD APIs. 

Despite the apparent simplicity of this architecture, wrapping 
libraries behind a GLOD interface is a non-trivial effort. Each 
LOD library has a different programming model, which must be 
reconciled with the GLOD model. An additional complication is 
that most LOD systems are application specific and support only a 
subset of GLOD’s capabilities. Similarly, few LOD implementa-
tions respect rendering state, and must be modified to do so. 

The initial version of GLOD, which has been available in prere-
leases for six months already, tries to provide a broad but fast 
feature set that is reasonably performance-competitive. In the 
following sections, we discuss some important implementation 
issues we faced in order to make this system operable and effi-
cient.  

6.1 Managing Heterogeneous Groups 
A major challenge we faced in making GLOD function coherently 
was providing a flexible mechanism for group adaptation. This 
process is difficult because we do not want to restrict GLOD to a 
particular type of error metric. Consider the design space in which 
we must work: vertices can have any number of different attrib-
utes, each of which might have a particular error associated with 
it. The relative priority of an object compared to other objects in 

the group might be a weighted function of any of these parame-
ters. Furthermore, because multiple types of hierarchies can exist 
in a single group, we must make sure that the different hierarchies 
have a consistent computation for each type of error. 

The GLOD get/set interface is sufficient, we believe, to support 
all of these possible settings. Error metric and error weighting can 
be set on an per-attribute, per-object basis, or globally on a per-
group basis. 

Another challenge is providing group management over a het-
erogeneous set of hierarchy types. For example, a group may 
contain discrete, continuous, and view-dependent hierarchies, all 
of which may require adaptation to meet a triangle budget. 
Toward this end, we have extended the traditional dual-queue 
optimization algorithm with an additional layer of abstrac-
tion[Duchaineau et al. 1997][Funkhouser and Sequin 1993]. The 
queues actually contain a set of object hierarchies, each of which 
may be asked to coarsen or refine itself, according to its place on 
the queues. These requests contain limits as well, informing the 
hierarchy how much adaptation it can perform before its turn 
should be relinquished to another hierarchy on the queue. 

6.2 Memory Management 
Efficient rendering of multiresolution data requires caching the 
current cut in AGP or video memory. While there are a number of 
interfaces that exist for this purpose, they are tuned for use by the 
application user. We should be reluctant to use these extensions, 
due to our stated design goal of not interfering with OpenGL 
state. However we felt that the conflicting goal of efficient 
rendering demanded an exception in this case. In order to mini-
mize interference with OpenGL, we must provide a mechanism to 
control how much video memory is used by GLOD, how that 
memory is shared between objects within GLOD, and how much 
data is transferred over AGP during adaptation.  

We experimented with one way to provide these controls: let 
the user provide to GLOD a pre-allocated “ fast memory”  buffer, 
for example from the NVIDIA VAR extension. From that point, 
GLOD would internally allocate the buffer amongst the rendered 
objects. Unfortunately, this level of memory allocation and 
management is complex to implement, and other fast-memory 
schemes (namely the ARB VBO extension) provide  locking and 
unlocking mechanisms that allow the mapped region to relocate, 
making direct memory management infeasible. Even if the user 
provided a vertex buffer object to GLOD which we then mapped 
ourselves,  we would still be left with the ongoing issue of 
managing the buffer for ourselves –a messy problem with many 
complicated constraints. 

The emergence of the VBO extension, while incompatible with 
our initial memory-management approach, itself provides a 
cleaner solution by allowing GLOD to use vertex buffer objects 
internally. Because VBO serves, in part, as a paging system for 
the working set of geometry being used by the video card, we can 
defer both the overall buffer management and the per-object-
buffer-management problems to VBO and the graphics driver. 
The issue of AGP flow to the graphics card during adaptation is 
controlled with a simple per-group limit on the adapt call. 

7 CROSSBAR SIMPLIFIER 
We now turn to the crossbar simplifier (XBS), which serves as the 
LOD generation component of GLOD. Our design goals of 
functionality and extensibility demand a new and extremely 
flexible approach to geometric simplification. XBS provides a 
rich set of options for simplification and can be used as a stand-
alone simplifier as well as the unifying component of the GLOD 
system. This simplifier is responsible for converting raw geometry 
received from the vertex array-based API calls into one of a 
number of hierarchy types, using one of several types of operators 
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and error metrics, driven by one of several types of simplification 
queues. By choosing among the modes with simple parameter 
switches, the application developer can affect the speed and 
quality of the simplification process, as well as the quality and 
management properties of the output.  XBS provides a uniquely 
flexible architecture for mesh simplification; in this section we 
discuss the design and implementation to achieve this level of 
flexibility. 

7.1 Algorithm and Component Overview 
In the context of GLOD, the input to XBS comes from the GLOD 
API in the form of several indexed (but possibly unshared) vertex 
arrays, one for each patch of the object to be built. In stand-alone 
mode, XBS can read these data from a standard 3D file format 
such as PLY or OBJ. 

Because the input data may not have its vertices fully shared, 
the Model performs an initial vertex sharing to merge vertices 
with geometric coordinates that are the same to within some 
specified tolerance. When vertices have similar geometric coordi-
nates but different attribute values, they are linked together as 
coincident vertices but not explicitly merged. This is similar to 
Hoppe’s construction of wedges [Hoppe 1998], but here we 
eliminate the need for auxiliary structures by maintaining them as 
fully-represented, independent vertices. In addition to keeping our 
representation simple, this choice is also consistent with the 
expected representation within the hierarchies we produce, which 
will generally store vertices in vertex arrays. If the Operators 
support the maintenance of these multi-attribute vertices, then the 
simplification process will maintain the connectivity of these 
vertices while allowing triangles with different attributes at the 
same vertex. After sharing, the vertices are indexed by storing 
with them the ids of their adjacent triangles. 

After the input data has been processed in the Model, the Sim-
plification Queue initialized according to the type of Operator and 
the Error Metric. The Queue may employ one of several different 
policies to issue operations to be applied by the Simplifier, 
including the Greedy, Lazy, and Independent policies [Luebke et 
al. 2003]. For example, the goal of the Lazy policy is to reduce 
the number of times the Error is needlessly recomputed for each 
simplification operation as a result of applying neighboring 
operations. In the Greedy scheme, the Error metric is recomputed 
immediately for all added or modified Operators, whereas the 
Lazy scheme simply marks them as dirty. These dirty Operators 
only have their costs recomputed when they return to the top of 
the priority queue, resulting in fewer extraneous cost computa-
tions. For more computationally expensive error metrics, we have 
also developed the Randomized queuing policy. The goal of the 
Randomized policy is to allow the user to specify exactly how 
many error evaluations will be performed per operation that is 
actually applied. The user gives a desired ratio, R, of cost compu-
tations performed to operations applied. The algorithm randomly 
chooses a maximal set of independent (non-overlapping) opera-
tions and computes their costs. If there are K operations in this 
maximal set, we apply K/R operations. This approach trades 
simplification quality for simplification speed. 

The Error Metrics may be take many forms. For example the 
sphere metric is a simple accumulation of bounding spheres 
enclosing all the vertices that have merged to form the current 
vertex. This is extremely fast and fairly memory efficient, but  is 
often extremely conservative. The quadric error metric [Garland 
and Heckbert] can produce higher-quality results, but can be 
slightly slower and does not produce a guaranteed error bound 
(although if all of our objects use this same metric, their relative 
errors may be compared). The texture error is appropriate for 
textured meshes, but is somewhat slower and may not work well 
for the most general triangle inputs. 

As each operation is applied by the Simplifier, the Model and 
the Hierarchy are updated by the Operator. The Operator then 
informs the Queue of which of its neighboring Operators to add, 
delete, or modify. The Simplifier continues to receive Operators 
from the Queue and apply them until the Queue is empty. It then 
tells the Hierarchy to finalize its output and is done. 

7.2 Component Interactions 
The above discussion presents what amounts to the standard 
bottom-up simplification algorithm as seen from the point of view 
of component objects. The procedure relationships among the 
components are depicted in Figure 2. We can see three fan 
relationships (Model-Input, Model-Operator, and Queue-
Operator). These indicate, for example, that the Model component 
needs to have one piece of code for each type of Input component 
and for each type of Operator component. Similarly, each type of 
Operator component must have specific code that deals with the 
base type of Queue (but not with each specific type of Queue). 

Whereas the inter-relationships of the Input, Model, Simplifier, 
and Queue components are well-behaved, we can clearly see three 
crossbar relationships among the Operator, Error Metric, and 
Hierarchy components. For example, to add a new Operator to our 
system, we must implement a routine to interact with Model, a 
routine to interact with Simplifier, a routine to interact with 
Queue, and routines to interact with each specific type of Error 
Metric and Hierarchy. 

These crossbar relationships are problematic for scaling to large 
numbers of specific types, but several observations can help us 
reduce this burden. First, several of the Error Metrics may agree 
on a type of output value, such as geometric object-space devia-
tion. This can effectively reduce the crossbar relationship between 
Error Metric and Hierarchy to a fan relationship. Second, we can 
observe that many Operator types are of the same class. Two of 
those listed are vertex merges which produce new output vertices, 
and two are vertex merges that retain one of the input vertices. 
This can provide a good deal of code sharing within each of the 
remaining crossbars. Finally, we can always add components 
without supporting the full Cartesian product of component 
combinations. Such cases can report an error and revert to some 
default component. 

8 EFFICIENT VIEW-DEPENDENT LOD 
Inherent in the design of GLOD is the need for efficiency in both 
simplification and rendering.  This goal is especially  challenging 
for view-dependent LOD, particularly with regard to rendering.  
Indeed, view-dependent simplification (VDS) has become 
synonymous with slow rendering in the minds of most graphics 
practitioners: clever but not very practical. Conventional wisdom 
holds that VDS is appropriate only for very large continuous 
surfaces, such as terrains or scanned datasets. The reason behind 
this perception is a mismatch with current graphics hardware: the 
typical approach to view-dependent simplification maintains the 
active representation of a mesh as a linked list of primitives to 
facilitate incremental adaptation [Luebke and Erikson 
1997][Hoppe 1997][Pajarola 2001], or continuously regenerates 
the simplification from the underlying vertex hierarchy 
[Duchaineau et al. 1997][Lindstrom and Pascucci 2001]. In both 
cases the geometric data is stored in main memory and issued to 
the graphics hardware in immediate mode, limited by CPU load, 
driver function call overhead, and the efficiency of the bus 
carrying the data to the GPU.   

Nonetheless, we believe view-dependent simplification repre-
sents a core element of LOD; VDS offers superior fidelity to 
discrete LOD for a given triangle count and is mandatory for 
certain datasets, such as terrains and very large unorganized 
isosurfaces. As a primary contribution of this paper, we present a 



 

8 

new method for view-dependent mesh simplification that supports 
drastically more efficient rendering.  Our technique is encapsu-
lated in the standalone VDSlib library, which has been co-
developed and co-designed with GLOD over the past year. 

 

8.1 More Efficient Rendering 
The key concept behind VDSlib’s efficient rendering is to cache 
simplification results in coherent vertex arrays.  Indexed vertex 
arrays are the highest-performance rendering path in modern 
graphics cards.  They provide excellent issue efficiency, exploit 
the post-transform vertex cache, and allow data to change without 
requiring additional setup costs.  Caching the adapted mesh in a 
coherent array enables the use of vertex array rendering.  The 
arrays are effectively write-only buffers, which means we can 
even store them in AGP or video memory for still faster rendering.  
We use the Vertex Array Range (NVIDIA), Vertex Array Object 
(ATI), or, most recently, the Vertex Buffer Object ARB OpenGL 
extensions for this purpose.  We map this buffer directly into the 
client address space and write updates directly to it as the mesh is 
adapted.  We have found that this usage pattern is not signifi-
cantly slower than writing updates to a buffer in system memory.  
We also organize this buffer as a set of interleaved arrays to 
further increase write performance. 

Another long-standing technique for increasing rendering effi-
ciency is to create triangle strips from the mesh to be rendered. 
Even taking into account the per-frame cost of building the strips 
as the underlying mesh changes, Hoppe and more recently [Shafae 
and Pajarola 2003] have shown that triangle stripping can im-
prove rendering performance of view-dependent LOD.  However, 
since we use indexed vertex arrays, the gains from triangle 
stripping—a reduction in the number of indices sent to the GPU, 
rather than in the number of vertices—are relatively small. Thus 
in our current implementation we do not currently employ this 
optimization, but it seems to be an obvious next step. 

 

8.2 The VDSlib Hierarchy 
VDSlib uses a generalized vertex hierarchy which supports many 
different simplification methods, such as half edge-collapses, full 
edge-collapses, and n-way merges of an arbitrary number of 
vertices.  This hierarchy has the structure of a tree, with the 
vertices of an original model making up the leaf nodes at the 
bottom of the tree.  Nodes above the leaf nodes are created by 
simplification operations collapsing two or more nodes into a 
single new "parent" node.  An active representation of the simpli-
fied model comprises a path, or cut, across this vertex hierarchy, 
where the nodes on the path make up the vertices of the represen-
tation.  At any point on this cut, a node may be split apart, or 
unfolded, into its child nodes, increasing detail in that node's 
region of the model; alternatively, if all of the children of a node 
are on the cut, they can be collapsed together, or folded, into their 
parent node, reducing detail in that node's region of the model.  
Thus, by continually folding and unfolding nodes in the appropri-
ate regions of the cut, we can adjust the representation to the 
current viewing parameters, accomplishing view-dependent level 
of detail. 

VDSlib's hierarchy of nodes is called a forest.  This structure 
represents an object that is using continuous level of detail; a cut 
in VDSlib represents an instance of an object at a particular 
simplification state.  A GLOD object instance is divided into 
patches, which are rendered independently of each other; likewise, 
a VDSlib cut's triangles are divided into patches, which are 
rendered separately.  Because more than one instance of an object 
can be created, data specific to a cut must not be in the forest 
hierarchy.  The hierarchy and its store of geometric data are not 

modified at runtime - all data that change as simplification takes 
place are associated with each cut.  More than one cut can thus be 
associated with each forest, efficiently implementing compatibility 
with GLOD's capacity for instancing. 
 

8.3 Simplification Procedure 
The typical approach to view-dependent simplification is thresh-
old based: each frame, a process traverses the front of active 
primitives, for each one calculating a view-dependent error1 and 
locally refining the primitive if this error is above some threshold 
value.  To support simplification to a triangle budget, however, 
we use a dual-queue system similar to that of ROAM [Duchaineau 
et al. 1997].  We maintain the active nodes--all nodes that are 
eligible to be unfolded--in a priority queue, sorted on their error; 
we call this queue the unfold queue.  We also maintain a priority 
queue, sorted on node error, of all nodes that are directly above 
the active cut; these are all nodes that are eligible to be folded, 
and this queue is called the fold queue.  To unfold a node, we 
choose the node on the top of the unfold queue; of all nodes 
eligible for unfolding, this node is contributing the most error to 
the model representation.  Similarly, of all the nodes eligible for 
folding, the top of the fold queue will introduce the least error 
into the representation when folded.  Simplification to a triangle 
budget is as simple as folding or unfolding until the target triangle 
count is reached.  Threshold simplification is supported by folding 
or unfolding until the target error threshold is reached.  If we wish 
to simplify a group of objects to a triangle budget or an error 
threshold, we maintain only a single unfold queue and a single 
fold queue for the entire group; nodes from each of the objects 
reside in each queue.  In this way, we can simplify to the target 
while balancing the error of each object in the group against the 
errors of the other objects.  We can even support simplification 
with both a triangle budget and an error threshold target, where 
simplification terminates when either of the targets is reached.  
This mode is particularly useful when GLOD is simplifying a 
group containing both discrete and continuous LODs to a budget 
(described further in section 6.1).  

Whenever a node becomes active, we cache the geometric 
information for the vertex it represents in a vertex array and keep 
track of its index or ref in the vertex array.  When that node is 
deactivated, we record its ref in a free list, denoting that that slot 
in the vertex array is not being used.  We do not need to modify 
the vertex array at this time, because no triangles are going to 
reference the inactive vertex.  When activating vertices, we first 
check the free list to see if any unused slots are available in the 
used section of the vertex array, and if not we simply add the 
vertex onto the end. 

8.4 Support for Patches 
Because objects can comprise multiple patches that use different 
rendering state and have replicated vertices at their boundaries, 
VDSlib must support simplification of these patches without 
introducing cracks or overlap.  When the forest hierarchy is being 
built, the nodes corresponding to shared vertices are tagged as 
coincident nodes--nodes which share a location, but differ in one 
or more other characteristics (such as texture coordinates or 
normals).  When boundary nodes of one patch are merged 
together, their coincident nodes in the adjacent patch are also 
merged together, and the two parents are made coincident with 
each other.  During simplification, a fold or unfold of a node N 

                                                                 
1 This error can also take into account whether the primitive is in the view 
frustum; in GLOD, primitives found to be outside the view frustum are 
assigned an error of zero, meaning that they can be drastically simplified 
without affecting the error of the rendered scene. 
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immediately triggers the same operation on any nodes with which 
N is coincident.  This simple mechanism synchronizes the simpli-
fication of adjacent patches.  The exception to the rule of coinci-
dent child nodes having coincident parents is when all remaining 
nodes of a patch are being merged together; in this case, their 
parent node is made to belong to an adjacent patch, and is not 
coincident with any other node from that patch.  This allows an 
entire patch to be simplified away and later reintroduced, a 
property of great benefit when a complex multi-patch model is far 
from the viewpoint or otherwise requires a very coarse LOD. 

 

8.5 Interruptible Simplification 
Because each simplification operation on a node in the fold or 
unfold queues (or set of simplification operations on a set of 
coincident nodes) is independent of any others in that queue, we 
can interrupt the simplification process before it has reached its 
target budget or threshold and still be guaranteed a valid represen-
tation to render.  This is useful in cases where an abrupt camera 
movement or sudden change in adaptation target results in a large 
volume of simplification needing to take place.  If this entire 
volume of simplification is performed in a single adapt call, it may 
cause a noticeable pause in the application.  Instead, we put a 
limit on the maximum number of simplification operations that 
can be performed during an adapt call.  This will spread the 
volume of simplification out over a number of frames, allowing 
the application to maintain a reasonable framerate over this 
period.  The simplification may t>ake longer to complete than if 
done all in one frame, but assures interactivity throughout. 

 

9 PLANNED EXTENSIONS TO GLOD 
Not all LoD problems can be solved in GLOD. Sometimes, this is 
a limitation of our implementation --- for example, terrain render-
ing or out-of-core LoD. Other problems, it seems, cannot be easily 
solved within GLOD at all: these problems are usually those that 
require more sophisticated access to OpenGL state. Here, we 
discuss the issues in extending GLOD's functionality to these 
domains. 

Terrains (and other regular geometry) are fully supported in the 
present implementation of GLOD. However, the regular nature of 
the input geometry allows many optimizations that make its 
rendering far more efficient than unorganized meshes. As a result, 
it makes sense for GLOD to include a rendering module for 
regular geometry. As can be seen in the implementation section, 
this presents no challenge for us as GLOD programmers: GLOD 
is designed for the addition of new external modules, as was 
shown by our support of the VDS module. However, the real 
challenge is wedging regular geometry into the GLOD framework: 
vertex arrays are not necessarily the most efficient way to repre-
sent terrain --- heightfields, for example, are more natural ways to 
store this geometry. Rather than changing the interface to GLOD, 
however, we believe that the way to address this is by setting state 
on the object after it is created but before the patches are inserted: 
for example, the user might be required to set 
GLOD_GRID_WIDTH/HEIGHT before calling glodInsertArrays. 
Beyond this sort of technical discussion, there should be no real 
technical limitation to adding terrains to GLOD. 

Out-of-core rendering, while a giant problem in itself, should 
conceptually be possible within the GLOD framework. The main 
reason here is that the out-of-core process still consists (largely) 
of input data, a pre-processing step which we would bind to 
adaptation, and a real-time rendering phase. The real challenge in 
implementing this in GLOD is that this problem requires file-I/O 
which does not map well to the GLOD interface. The logical way 
resolve this problem is either using memory mapping or file 

pointers. The first option, of course, still limits the problem to the 
computer's addressable memory space. A more scalable solution is 
to avoid the vertex array interface entirely, using GLOD the 
get/set interface to pass file-pointers in and out of GLOD. Another 
challenge with implementing out-of-core problems in GLOD is 
that vertex programs, which are being used to accelerate transfer 
of geometry to the graphics card, cannot be used by the renderer 
because GLOD guarantees that it will not touch OpenGL state. 

Many specialized LoD problems these days want to affect 
OpenGL state. For example, texture impostors and image-based 
LoD need to load textures into OpenGL for their rendering phase. 
GLOD guarantees that its main routines will not affect OpenGL 
state. We can, in order to support more advanced LoD features, 
loosen this requirement for special hierarchy types under the 
following restriction: the user should explicitly enable some 
GLOD option (on a per-object basis using the get/set interface) 
that might, for example, cause well-understood state changes to 
take place as a result. The controlling idea here is that basic 
GLOD will still "not affect" OpenGL state unless directly told to 
do so by the user. 

A number of non-geometric uses of GLOD might eventually 
become possible with further implementation. For example, the 
builder interface of GLOD might ultimately be fitted with an 
optimizer that would allow dynamic optimization of vertex arrays. 
This same module might be used internally by GLOD as well, or 
externally using the readback mechanism by applications. This 
sort of application, too, fits well into the GLOD interface. 

10 FUTURE WORK 
GLOD is designed—both as a system and as an API—to support 
hierarchy types beyond the basic ones that we have implemented 
thus far. Bringing some of these hierarchies and algorithms into 
GLOD is a matter of programming rather than technical limita-
tion. However, some advanced approaches to LOD present real 
challenges because they come in conflict with our basic API 
design and rules. Here, we discuss how GLOD can be made to 
work in these domains without changing the API. 

Terrains (and other regular geometry) are supported in the 
present implementation of GLOD using the catch-all XBS 
simplifier. The main challenge in efficiently inserting terrains into 
GLOD is that vertex arrays clearly provide more data than 
necessary to specify a terrain. We could add a new call for 
inserting terrains, but better might be to address this with a 
combination of parameter settings. For example, if the user inserts 
regular-grid geometry, they could set the GRID_WIDTH/ 
HEIGHT object parameters before calling glodInsertArrays(name, 
patch, GLOD_GRID,...).  This sort of scheme could be used to 
insert all sorts of regular geometry formats into GLOD.  
Out-of-core rendering, while a difficult problem in itself, should 
not present major conceptual hurdles within the GLOD frame-
work. The out-of-core process still matches the insert, build, 
adapt, draw process that we have outlined so far. The challenge in 
implementing such a system in GLOD is that the input and 
intermediary steps are file-specific stages in the system, and 
OpenGL does not deal with files. The logical way resolve this 
problem is either using memory mapping or file pointers. Neither 
completely solves the problem they limit us to the computer's 
address space. Furthermore, depending on the memory mapping 
policy of the operating system, GLOD might consume the entire 
available memory before pages begin getting kicked out of RAM 
again. A more scalable solution is to avoid the vertex array 
interface entirely, using GLOD the get/set interface to pass file-
pointers in and out of GLOD. 

Many specialized LoD problems these days want to read or 
affect OpenGL state. For example, texture impostors and image-
based LoD need to load textures into OpenGL for their rendering 



 

10 

phase. We can, in order to support more advanced LoD features 
that exhibit this behavior, relax our state alteration guarantee: in 
order for GLOD to alter OpenGL state, some parameter should 
be manually set by the user. This guarantees that the unsuspecting 
user will never see state changes, but the advanced developer has 
the power necessary to cause them to happen. 

Finally, we can extend the GLOD API into several fundamental 
new directions. If we ignore the rendering components of the 
GLOD API, it exports a very clean interface for geometry pre-
processing and manipulation. This interface is easily adapted to a 
wide variety of algorithms ranging from vertex order optimization 
to parameterization.  
 

11 CONCLUSION 
The GLOD system that we have presented here is unique in 
several ways. GLOD goes to great lengths to present a low-level 
interface to LOD. This is good for GLOD users: adoption of LOD 
is easy, yet powerful and above all else, hardware oriented. Users 
do not have to reconcile the LoD system against their graphics 
driver and their program model. From the perspective of LOD 
researchers, our approach has many gains: GLOD is able to 
abstract the LOD pipeline without breaking hardware compatibil-
ity, and therefore provides an ideal model for new LOD libraries 
as well. The GLOD system can be extended to support new LOD 
algorithms, making it a good way to deploy LOD code. Finally, 
GLOD is an experiment in aligning LOD algorithms with the 
cutting edge in graphics hardware: can we balance abstraction 
against speed? GLOD, its API and its implementation, shows us 
how it can be done. 
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