E]

GLOD: Level of Detail for the Masses

Jonathan Cohen” David Luebke® Nathaniel Duca Brenden Schubert”

"Johns Hopkins University

Abstract

We present GLOD, a geometric level of detail system integrated
into the OpenGL rendering library. GLOD provides a low-level,
lightweight API for level of detail operations. Unlike heavy-
weight scene graph systems, GLOD supports incremental adop-
tion and may be easily integrated into existing OpenGL applica-
tions. GLOD provides a simple path for developers to add level
of detail to their system, while retaining a minimalist close-to-the-
hardware approach compatible with high-performance rendering
and future extension of the base OpenGL layer.

Keywords: level of detail, OpenGL, application programmer’s
interface

1 INTRODUCTION

Level of detail (LOD) techniques are widely used today among
interactive 3D graphics applications, such as CAD design,
scientific visualization, virtual environments, and gaming. The
field of LOD has grown quite mature. For example, many excel-
lent algorithms exist for LOD generation, or creating simplifica-
tions of polygonal meshes; they range from fast and simple to
slow but sophisticated, and the resulting simplified models
(themselves called levels of detail or LODs) range from crude to
excellent. A wide gamut of techniques have also been presented
for LOD management, or the run-time task of adjusting the level
of detail to respond to changes in the scene (such as movement of
the viewpoint or objects) while balancing detail with perform-
ance. These range from simple distance-based approaches that
select one of a set of discrete LODs to elaborate view-dependent
LOD methods that perform fine-grained adaptation of the polygo-
nal tessellation on the fly.

Probably almost every high-performance interactive graphics
application or toolkit built in the last five years utilizes LOD to
trade off visual fidelity for interactive performance. However, no
widely accepted programming model has emerged as a standard
for incorporating LOD into programs. Existing tools fall into two
categories: mesh simplifiers and scene graph toolkits. Mesh
simplifiers provide only a partial solution; they take a complex
object and produce simpler LODs, but do not attempt to address
LOD management at all. Scene graphs perform LOD manage-
ment, but go to the opposite extreme; they provide heavyweight
“all or nothing” solutions that lump LOD in with myriad other
aspects of an interactive computer graphics system: hierarchical
transformations and instancing, view-frustum culling and visibil-
ity, memory management and paging, and so on. A good exam-
ple of a scene graph is OpenGL Performer [Rohlf and Helman
1994]; though a powerful and well-written library for high-
performance rendering, a developer wishing to use Performer for
LOD must use the full set of Performer scene graph constructs,
and indeed must build his or her entire interactive graphics system
on Performer, from the ground up. Often this requirement is too
restrictive or inappropriately burdensome, and instead the devel-
oper ends up with a different burden: creating yet another custom
LOD system.

In this paper we present GLOD, a tool for geometric level of
detail that provides the full LOD pipeline in a lightweight and
flexible application programmer’s interface (API). This API is a
full-featured, powerful, extendible, yet easy-to-use LOD system,
supporting discrete, continuous, and view-dependent LOD,

*University of Virginia

multiple simplification algorithms, and multiple adaptation
modes. GLOD is not a scene graph system; instead, it is an API
integrated into OpenGL, an existing and popular low-level
rendering APIL. Before presenting the GLOD API, we first discuss
the design principles underlying this choice.

2 DESIGN PRINCIPLES

Four fundamental principles have driven the formation of GLOD
and its API:

o Incremental adoption: Unlike scene graph approaches, users
of the GLOD API should not be forced into the use of the en-
tire pipeline, but should instead be allowed to independently
adopt just the portions of the system that they desire. For ex-
ample, GLOD can be used to generate discrete LODs which the
user then manages and renders directly, or GLOD can be used
to manage LODs produced by the user.

FastPath principle: For every type of LOD task, the API must
support a way to achieve that task in a high-performance fash-
ion. For example, if the advanced user wishes to specify that
GLOD cache and render LODs from a specific portion of fast
on-card video memory, the API supplies parameters to support
this.

o Ease of use: The API should be straightforward to use, espe-
cially to any developer already familiar with OpenGL. For
example, using GLOD must not require developers to add lots
of complex code to their system, nor handle their OpenGL code
in any new or unusual fashion, nor learn any new calls if an
existing OpenGL call will suffice.

Extensibility: We require two forms of system extensibility.
First, through development efforts, the GLOD API must be
capable of supporting a wide variety of geometric level of
detail tasks. For example, researchers and developers must be
easily able to extend the capabilities of GLOD. Second, the
GLOD API must not lose its usefulness through lack of devel-
opment, but instead must evolve without code redesign as
OpenGL acquires new extensions. For example, GLOD should
support any new OpenGL drawing extensions that emerge
without requiring extra development effort.

These design goals suggest a low-level and lightweight API
supporting a highly flexible input/output model. This minimalist
API should leave as much as possible to the user, keeping the
interface simple for simple applications while providing parame-
ters where necessary for advanced users to hook into features
necessary for high-performance rendering. We should model our
API on existing OpenGL semantics, such as features and exten-
sions for vertex arrays, textures, lights, and texture compression.
For extensibility and performance, we should keep the API very
near the rendering layer, while making the bare minimum of
changes to that layer.

3 FOLLOW THE RED BOOK ROAD

Our implementation of the GLOD API is tightly integrated with
the industry standard OpenGL API. We consciously place GLOD
as close to the OpenGL driver as possible: following design
techniques used by Chromium [Humphreys 2002], our prototype
implementation actually intercepts OpenGL commands to
effectively masquerade as the OpenGL driver, and our design

Jonathan Cohen
Cohen, Jonathan, David Luebke, Nathaniel Duca, and Brenden Schubert. GLOD: Level of Detail for the Masses. JHU Computer Graphics Lab Technical Report JHU-CS-GL03-4. 2003.

decisions are made as if GLOD were a fundamental part of
OpenGL. Following through on this strategy, we plan to propose
GLOD as an official ARB-recognized OpenGL extension.

glodNewGroup (grpname) ;
glodDeleteGroup (grpname) ;

Create a group to contain and manage objects. Deleting
a group deletes all its objects.

glodNewObject (objname, format, grpname) ;
Create an object for a particular hierarchy format and
place in the named group.

glodInsertArrays (objname, patchname, mode,
first, count, level, error);
glodInsertElements (objname, patchname, mode,
count, type, indices,
level, error);
Put a patch into an object using vertex arrays. Level and
error can be used to load an LOD generated elsewhere
into a discrete hierarchy, but are typically set to 0.

glodBuildObject (objname) ;
Complete an object and convert to hierarchy in the se-
lected output format.
glodInstanceObject (objname, instname, grpname) ;
Instantiate an existing object by sharing its geometry
hierarchy data, and place into a group.
glodDeleteObject (objname) ;
Delete an object (which removes it from its group).
glodBindAdaptXform (objname) ;
Capture an object’s viewing parameters for adapting
(not drawing — GLOD does not change the OpenGL
transformation state).
glodAdaptGroup (grpname) ;
Adapt LOD for all the objects in a group according to
the group’s ADAPT _MODE.
glodDrawPatch (objname, patchname) ;
Draw one patch of an object.
glodFillArrays (objname, patchname, first);
glodFillElements (objname, patchname, type, ele-
ments) ;

Read back current adapted object into vertex arrays

glodGetObject (objname, data) ;
glodLoadObject (objname, data) ;

Read back an object’s hierarchy so it may be saved and
later reloaded to GLOD.

Figure 1: The GLOD API.

The gains of such a design meet our basic design principles
well: first, by choosing an industry standard, we base our system
on a robust developer-backed system that is guaranteed to stay
up-to-date as graphics technology changes. Second, the use of the
OpenGL brings along with it a programming model with which
users are accustomed and comfortable. Most importantly,
OpenGL brings along a design philosophy that can be used to
guide the complex decision processes of generating a general
purpose geometric level of detail APL

4 GLOD API

The GLOD API focuses on providing a lightweight model for the
creation, management, and rendering of geometry. Here, we
discuss both the API itself, and the design choices made to reach
the format presented here. We discuss several topics relating to
GLOD: management of dataflow in the system, the interface into
the system, and how we manage data formats within the API to
achieve maximum versatility. Finally, we have implemented the
GLOD API and have tested it against a variety of usage scenarios
as a means to verify and establish the viability of the API as a
Level of Detail interface.

The fundamental achievements of GLOD all derive from two
judicious choices for fundamental data types: first, we must
choose the fundamental geometric unit that GLOD operates on,
and next, we must chose the fundamental units that data can enter
and leave the GLOD system. These units, if chosen properly,
make it possible for GLOD to exist peacefully at a driver level
without interfering either with OpenGL capabilities or system
resources.

4.1 Geometric Primitives

Our fundamental geometric primitive in GLOD is the patch. We
define a patch as the smallest unit of geometry for which the
application developer may change the global rendering parame-
ters. A patch, like a compiled vertex array, is rendered as a block
of geometry with a single rendering state; the developer is
responsible for setting the rendering state. Choosing an atomic
drawing unit for GLOD frees GLOD from the burden of manag-
ing the large (and ever-increasing) amount of OpenGL rendering
state. In fact, not only does it make it unnecessary to manage GL
state, but it expressly forbids the very idea: Drawing a GLOD
patch is as simple as setting up the rendering parameters in the
usual fashion and then calling glodDrawPatch () on the patch
in the exact same way that one might call glDrawArrays (),
the chief difference being that what you get is an LOD of the
original arrays.

Although patches are appropriate units for rendering, they are
not sufficient for describing the construction of a multiresolution
hierarchy. Some models contain multiple sets of geometry, each
of which must be rendered with different rendering parameters,
but which are topologically connected. If we were to assign each
such set to a patch and independently construct a multiresolution
hierarchy for each, we could not prevent the formation of cracks
between these models when we later adapt their resolutions and
render them. To address this problem, we introduce the notion of
an object, which is a collection of patches that are combined
during the glodBuildObject () process into a single multireso-
lution hierarchy. This abstraction provides enough information to
the system to maintain connectivity between adjacent patches
during the both the building and later adaptation processes.

Just as a developer might render an OpenGL vertex array mul-
tiple times during a frame to draw multiple instances of the same
object, a GLOD object may need to be rendered multiple times at
different adaptation levels. Thus GLOD provides an Instance
construct to represent different instantiations of a GLOD Object.

Patch & Object Params

Group Params

Vertex Arrays Hierarchies Vertex Arrays
Hierarchy J L, J
Generation & Group | OpenGL
Instantiation [-------- - Management

Figure 2: The GLOD object and dataflow model.

Although GLOD’s Object construct provides enough information
to adapt an individual object to a particular level of detail,
significant performance gains can be made by amortizing adapta-
tion costs across multiple objects. The user may also wish to
specify an adaptation criterion, such as a triangle budget or a
screenspace error threshold, that spans a group of objects. This
necessitates a GLOD Group construct. A GLOD group is simply
a collection of GLOD instances; just as a patch is the fundament
rendering unit in GLOD, a group is the fundamental adaptation
unit.

We support all of these approaches with little added complex-
ity: Groups are limited to a flat namespace, as are objects. New
objects (glodNewObject) can be added only once to one group.
After the object has been created, the glodInstanceObject call
is used to instantiate multiple objects into the same or other
groups. Finally, since some rendering state parameters affect
adaptation (for example, the modelview and projection
matrices are used to determine the error of a LOD), relevant state
is captured directly from OpenGL using a simple bind call for
each object. This transformation is used only for the adaptation of
the objects and not during rendering; the user is free as always to
control the OpenGL state throughout the rendering process.

4.2 GLOD Dataflow

So far, we have presented the derivation of the GLOD object
model, which strives to be lightweight and interfere minimally
with standard OpenGL drawing methods. Next we present a
model for bringing data into and out of GLOD in a way that

Q
o

Figure 3: Torus model containing multiple patches.
On the left, the patches have been simplified as a
unified object; on the right, individually.

allows GLOD interaction to take place with the same mechanisms
that are ordinarily used by OpenGL.

Our design choice for a fundamental I/O primitive is the Vertex
Array. By following the OpenGL Vertex Array specification, we
are able to cleanly capture all of the types of possible geometric
output used by an application, starting with coordinates, but also
normals, multiple sets of texture coordinates, and even vertex
program parameters. In short, the use of Vertex Arrays allows us
to maximize the compatibility of the library with the latest in
graphics hardware trends with very little programming effort. At a
high level, the GLOD system may be seen as three modules that
receive and produce data, as we will show here.

The user specifies the input model patch-by-patch to the hierar-
chy builder using vertex arrays. This input data either goes to a
simplifier or directly into a discrete hierarchy if the user selects a
special DISCRETE_MANUAL mode. Inspired by the load
interface for texture mip-map levels, this special build mode is a
convenient way to get discrete levels of detail created by an artist
or by another LOD system into GLOD to take advantage of its
management and rendering features. After a group is adapted, the
user can read back adapted patches using vertex arrays, and of
course, such data can be specified in just the same format directly
to OpenGL using the same vertex arrays.

In many cases, it may be useful for an application developer to
read back an entire hierarchy from GLOD and push it back into
GLOD at a later time. This is especially useful for avoiding the
time to build the object every time your application starts. This
ability is inspired by the OpenGL texture compression extension,
which similarly allows direct read back of internal format data for
later re-use.

Finally, GLOD also provides a standard OpenGL-style Set/Get
interface for a large number of parameters to patches, objects, and
groups. We use these to set build parameters (e.g. simplification
operator, error metric, etc.), adaptation modes (e.g. error threshold
or triangle budget), error thresholds, importance values, transition
modes, and so on. Viewed collectively, all of these flow mecha-
nisms allows flexible, and incremental uses of the GLOD system,
and lends longevity to its specification through use of the vertex
array interface.

5 USING THE GLOD API

We have implemented a basic version of the GLOD API in order
to verify its completeness and usability for the breadth of LOD
applications wherein it might be used. In the previous sections,
we have described the core process of using GLOD — object
creation, array insertion, building, and subsequent mixed adapta-
tion and patch drawing. We have found that a number of addi-
tional features are essential as part of GLOD to maximize the
system’s performance and versatility.

¥
UAA TS

BADI S
Prat e ri¥av
R VISP
WA, pmﬁ‘

)
gﬂ

Figure 4: Several objects and instances rendered
using GLOD with GLOD_CONTINUOUS format.

Two generic formats for creation of objects, DISCRETE and
CONTINUOUS, are exported by GLOD, ,but may be mapped
into internal formats in an implementation-specific way. Our
particular implementation maps discrete LODs to vertex arrays
directly, but defers view dependent rendering to VDS [Luebke
and Erickson 1997]. Beyond our implementation, however, any
number of internal and external formats and structures might be
supported.

The GLOD API uses a generic algorithm to support a wide
variety of adaptation modes, which are set on a per group basis
using the glodGroupParameter[if] interface. We support
triangle budgets and error budgets in both screen and object space
modes, but consciously avoid frame time guarantees on the basis
that OpenGL provides no clear notion of frame times either. For
completeness and efficiency’s sake, we also allow the behavior of
these generic modes to be controlled through additional parame-
ters to maximize rendering memory use and fine tune individual
object and patch

Priority hinting for Objects and Patches are provided through
the object and patch get/set interfaces: group priorities at an
object level enhance or decrease the importance of a given
component of the scene beyond the threshold that would be
predicted by standard refinement policies. One particularly
interesting use of this is in user-directed view dependent LOD.

High performance graphics applications are well known for
exploiting long graphics command queues to perform asynchro-
nous processing while vertex arrays draw. There are well under-
stood mechanisms to allow this in OpenGL extensions — chiefly,
the NV_FENCE mechanism. In all implementations of glod-
DrawPatch (), such implementations are fully supported
without any additional code on our part. However, other compo-
nents of GLOD allow levels of Asynchrony: thread safety is
easily guaranteed by the glodBuildObject () call, making
parallel simplification trivially possible. However, efficient
versions of view dependent refinement make it almost impossible
to adapt and draw simultaneously. Our solution to this to avoid
the issue entirely using requiring backoff, set by a group parame-
ter, which forces an adaptation algorithm to stop within a hard
time limit. This allow the user to soft-schedule the adaptation
process if the need arises.

[®] Lesson26

=z —ad

N

T~
e

Figure 5: Bunny rendered in GLOD using a multipass
rendering algorithm, demonstrating GLOD’s policy of
non-interference with the underlying graphics system.

6 DISCUSSION

The GLOD API that we have presented here exists not only on
paper but also as an experimental system used to verify our design
decisions so far, in the domains of discrete and continuous
simplification, rendering, and management. This system, used for
generating the images in this paper will ultimately become an
open source system enabling a path for level of detail research to
migrate from the research lab to full deployment. With a wide
array of simplification algorithms, hierarchical data representa-
tions, and management policies in their hands, all available
through the setting of a few parameters, application developers
will have tremendous power to select the implementations that
meet their needs.

REFERENCES

Humpreys, Greg, Mike Houston, Ren Ng, Randall Frank,
Sean Ahearn, Peter Kirchner, and James Klosowski.
Chromium: A Stream-Processing Framework for In-
teractive Rendering on Clusters. Proceedings of SIG-
GRAPH 2002.

Luebke, David and Carl Erikson. View-Dependent Simpli-
fication of Arbitrary Polygonal Environments. Pro-
ceedings of SIGGRAPH 97. pp. 199-208.

Luebke, D., Reddy, M., Cohen, J., Varshney, A, Watson,
B. and Huebner, R. 2003. Level of Detail for 3D
Graphics. San Francisco: Morgan Kaufman.

Rohlf, John and James Helman. IRIS Performer: A High
Performance Multiprocessing Toolkit for Real--Time
3D Graphics. Proceedings of SIGGRAPH 94. July 24-
29. pp. 381-395.

Woo, Mason, Jackie Neider, Tom Davis, and Shreiner.

OpenGL Programming Guide. Addison Wesley 1999.

