
Preliminary draft, SIGGRAPH 2002 Technical Sketch

Interruptible Rendering

J. Cliff Woolley
University of Virginia
jwoolley@virginia.edu

David Luebke

University of Virginia
luebke@virginia.edu

Ben Watson

Northwestern University
watsonb@cs.nwu.edu

Abstract
Interruptible rendering is a novel approach to the fidelity-versus-
performance tradeoff ubiquitous in real-time rendering.
Interruptible rendering unifies spatial error, caused by rendering
coarse approximations for speed, and temporal error, caused by
the delay imposed by rendering, into a single image-space error
metric. The heart of this approach is a progressive rendering
framework that renders a coarse image into the back buffer and
continuously refines it, while tracking the temporal error. When
the temporal error exceeds the spatial error caused by coarse
rendering, further refinement is pointless and the image is
displayed. We discuss the requirements for a rendering algorithm
to be suitable for interruptible use, and describe one such
algorithm based on hierarchical splatting. Interruptible rendering
provides a low-latency, self-tuning approach to interactive
rendering. Interestingly, it also leads to a “one-and-a-half
buffered” approach that renders sometimes to the back buffer and
sometimes to the front buffer.

1 Overview
Computer graphics practitioners have long recognized the tradeoff
between spatial detail and frame rates. Given additional
resources, which is more important: more detailed models or
higher frame rates? Answers to date have been ad hoc.
Conventional wisdom simply dictates that high, constant frame
rates are best; applications tend to target 30-60 Hz frame rates.

Interruptible rendering provides a principled approach to this
tradeoff by unifying spatial and temporal error in a single metric:
screenspace distance (Figure 1). A coarse image is generated and
continuously refined, decreasing spatial error while temporal error
grows with the passage of time. When temporal error exceeds
spatial error, there is no longer any reason to refine further: any
improvement to the appearance of objects in the image will be
overwhelmed by their wrong position and/or size. In other words,
when the error due to the image being late is greater than the error
due to the image being coarse, taking time for further refinement
is pointless. The front and back buffers are then swapped and
rendering begins again into the back buffer for the most recent

viewpoint. A system which minimizes combined spatial-temporal
error quite intuitively results in coarse, high frame rate display
when input is changing rapidly, and finely detailed, low frame
rate display when input is static.
Interruptible Image Generation: As the name implies,
interruptible rendering requires an interruptible image generation
process – interruptible because a sudden motion by the user can
drive up temporal error at any time. The back buffer should
always contain a complete image ready to be displayed, with the
rendering process incrementally refining the image until further
refinement is pointless. This requires an interruptible, progressive
image generation process. Depth buffered rendering requires a
continuous LOD algorithm that preserves containment – refined
versions of an object completely contain more simplified versions
already rendered. We use a hierarchical splatting algorithm
similar to QSplat [Rusinkiewicz 2000], but using bounded rather
bounding volumes to ensure containment (Figure 2). Other
possibilities include Sander’s progressive hull structure [Sander
2000] or adaptive ray tracing.
Measuring Temporal Error: We currently measure temporal
error by tracking the corners of an object’s bounding box to
quickly estimate how far it may have moved since rendering
began on the current image. For a more accurate, scalable
approach we plan to investigate randomized algorithms that avoid
bias by continuously picking a random set of vertices to track
from the model.

2 Benefits and Implications
Interruptible rendering is by nature a low-latency algorithm:
temporal error is continuously monitored (we check once per
millisecond in our current implementation), so the system can
respond almost instantly if the user makes a sudden move that
invalidates the current image. By addressing temporal error,
interruptible rendering also intrinsically tunes spatial detail to the
rendering platform performance. On a low-end platform, less
detail can be drawn before temporal error dominates spatial error
and a new image is started. Thus when input is changing rapidly,
the system will render less detail than a high-end platform but be
just as responsive. Finally, an interesting corollary of unifying
spatial and temporal error is that sometimes the image being
refined in the back buffer may achieve lower combined error than
the image in the front buffer. This implies that we should not
continue to display the front image, but instead should swap
buffers and continue refining the image in the front buffer.

References
RUSINKIEWICZ, S., AND LEVOY, M. 2000. QSplat: A Multiresolution

Point Rendering System for Large Meshes. In Proceedings of ACM
SIGGRAPH 2000.

SANDER, P., GU, X., GORTLER, S., HOPPE, H., SNYDER, J. 2000.
Silhouette Clipping. In Proceedings of ACM SIGGRAPH 2000.

Figure 0: Spatial and temporal error. The ideal instantaneous image
that reflects the most up-to-date input is shown in silhouette (colored
outlines). The left image is coarsely sampled, representing some
spatial error. The right image is finely sampled, but as a result is quite
late. The resulting temporal error, manifested as image-space distance
from the ideal instantaneous image, is larger than the spatial error of
the coarse approximation. In this sense the coarsely sampled bunny
actually represents lower visual error.

Figure 2: A sequence of progressively refined, splatted volumetric
models. Each finer model contains and covers all coarser models.

SIGGRAPH Technical Sketch sketches_0270

2

Additional Material for Reviewers

Figure 3: The interruptible rendering state machine. Icurrent represents the instantaneous image, Iback and Ifront represent the images
currently in the front and back buffers, and s and t represent estimates of the spatial and temporal error. An interesting consequence of
considering dynamic visual error in a framed context is that rendering sometimes begins refining in the back buffer and switches to refining
in the front buffer.

clear front buffer

Ifront = Icurrent

start

Refine the current image in the
front buffer.

improve ifront
tfront = Icurrent - Ifront
sfront = Ifront – ifront

Refine the current image in the
back buffer.

improve iback
tback = Icurrent - Iback
sback = Iback – iback

Start refining a new image toward
most current input in the back buffer.

clear back buffer
Iback = Icurrent

Back buffer now closer
to Icurrent than front is.

swap buffers
Ifront = Iback

It is pointless to
continue refining.

swap buffers
Ifront = Iback
sfront = sback

efront >= eback?
no yesyesno

tfront > sfront?

yesno
tback > sback?

Rendering to Back BufferRendering to Front Buffer

tim
e

tfront = Icurrent – Ifront
efront = sfront + tfront
eback = sback + tback

SIGGRAPH Technical Sketch sketches_0270

3

Figure 4: A sequence of contained progressively refined polygonal models (a progressive hull) suitable for
interruptible rendering. Each finer model contains and covers the preceding coarser models. This figure is from
Sander [2000].

Figure 5: (larger version of Figure 2) A sequence of progressively refined, splatted volumetric models. Each
finer model contains and covers the preceding coarser models.

Figure 6: A cutaway of the full-resolution bunny in our system illustrating the multiple levels of the octree used to
generate splats. In the interruptible system, the higher levels of the tree (the bigger nodes in the middle) are
rendered first as simple splats, and then successive lower levels (progressively smaller nodes) are rendered on top of
them in a streaming fashion. This process can be interrupted at any time.

