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® particl: \
® windows

® shadows thereof




Standard OIT algorithms <X

NVIDIA

® Sort primitives

e Fails for overlaps .

e Disrupts engine code (hot OIT) ] \
® Depth peeling [Everitt 2001, Bavoil et al 2007, x

e Unpredictably large # of passes

® A-Buffer [Carpenter 1984]




Standard OIT algorithms <X

NVIDIA

Depth complexity
from 1 (scarf)

to 10’s (grass)
to 100’s (hair)




Standard OIT algorithms <X
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Depth peeling:
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as our algorithm,
S passes




Standard OIT algorithms <X

NVIDIA

® Sort primitives

e Fails for overlaps .

e Disrupts engine code (hot OIT) ] \
® Depth peeling [Everitt 2001, Bavoil et al 2007, x

e Unpredictably large # of passes

® A-Buffer [Carpenter 1984]
e Unpredictably large amount of memory




Transparency Without Sorting <X
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® For each pixel sample, collect statistics about the
transparent fragments along that ray
® min z, max z, count, total opacity, stranger things
e Estimating the parameters of a model

® Fast: Fixed passes, fixed memory
® Approximate




Transparency Without Sorting <X
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® Variance Shadow Maps [Donnelly + Lauritzen 13D 2005]
® collect mean, variance of z

® Occupancy Maps [Sintorn + Assarsson 13D 2009]
e collect counts, occupancy bit mask
® assumes equal alphas; trouble with multiple clumps

® Fourier Opacity Maps [Jansen + Bavoil I3D 2010 — next!]
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Stochastic Transparency:

Basic Method




 zcreen door transparency _|O] %]




Alpha-to-Coverage [Akeley 1993]

® MSAA with S samples per pixel (S=8)




Alpha-to-Coverage [Akeley 1993]

e Kill all but a*S samples
® “coverage mask”™
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Alpha-to-Coverage

® Two fragments with similar alpha
cover the same samples -- oops
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[o[F:]

® Choose sample masks randomly [OpenGL 1993]

e Correct on average, in all cases
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Correct on average

1C1 + (1 — Oﬂ1)(a202 -+ (1 — 042)04303)

— GﬂoverSJ




Stochastic Transparency <X
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Screen-door + multi-sampling + random masks.

e Correct on average, in all cases
® Foliage, Smoke, Hair, Glass
e Mixed together

® Fast

® One order-independent pass
® One MSAA z-buffer

® But noisy
-> More samples
-> More algorithms




Stochastic Transparency <X
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(Reference)
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Stochastic Transparency <X

Alg 1. Basic
8 spp
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Stochastic Transparency <X
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Alg 1. Basic
16 spp




Stochastic Transparency <X
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Alg 1. Basic
32 spp
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Stochastic Transparency <X

Alg 1. Basic
64 spp
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Stochastic Transparency <X

Alg 1. Basic
912 spp
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Motion

(video #1)




Quantization noise <X

NVIDIA

Example:
e 4x MSAA
® a=0.6

> average = 0.6
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Alpha correction

® One extra pass to
render correct total a 0.5 *0.6/0.5 =0.6
- Correction factor

0.5 *0.6/0.5 =0.6

® One layer - exact A * 0.6/ = 0.6

® More layers -
still noisy 0.5 *0.6/0.5 =0.6

*0.6/ =0.6




Stochastic Transparency <X
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(Reference)
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Stochastic Transparency

Alg 1. Basic
8 spp
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Stochastic Transparency

Alg 2. Alpha correctiof
8 spp |
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Stochastic Transparency

Alg 3. Depth-based
8 spp




Stochastic Transparency <X
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(Reference)
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Stochastic Shadows




Stochastic Shadow Map <X
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e A shadow map, with screen-door transparency

® Noise - higher-res map

® Look-up is just PCF




Stochastic Shadow Map <X

NVIDIA




Stochastic Shadow Map <X
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e Optional: Render with MSAA hardware
- Each map pixel contains S depth values

® Models vis(z) =
How much light gets from camera to depth z

(a) A stack of semitransparent objects

e Cf. Deep Shadows [Lokovic and Veach 2000]




Stochastic Shadow Map <X
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Stochastic Shadow Map <X
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Crude, but compact, regular, and parallel:

® Every pixel looks the same
® S z-values
® Z’s not sorted

® Look-up is just PCF
® S comparisons per shadow-map pixel
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Depth-Based

Stochastic Transparency




Transparent Shadow Map <X
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¢ How much light gets from camera to depth z
= How much light gets from depth z to camera
= Contribution of fragment at depth z

- Compute c as a weighted sum of fragment colors

- Any transparent shadow method
is also an OIT method.
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Stochastic Transparency Algorithms

® “Depth based” stochastic transparency
® Render stochastic shadow map from the camera
® Accumulation pass
e Alpha correction pass

® Basic: 1 pass
® Alpha Corrected: 2 passes

® Depth Based: 3 passes
(Per 8 spp. Add 2 passes per 8 additional spp.)
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Motion

(video #2)




Discussion (1 of 2) <X
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Stochastic Transparency is

® Fast: Fixed passes, fixed memory
e Unified

® Simple

e Parallel
® No sorting!
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Discussion (2 of 2)

® 64 spp? “The elegance of brute force”
® Connections to Deep Shadow Maps
® Connections to Monte Carlo Ray Tracing

® Turns transparent stuff into opaque stuff
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Thanks also to James Reilley, Lars Nordskog,
John Tran and Steve Parker at NVIDIA.
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