Stochastic
Transparency

Eric Enderton
Erik Sintorn
Pete Shirley

David Luebke

13D 2010

<A NVIDIA.




® particl: \
® windows

® shadows thereof




Standard OIT algorithms <X

NVIDIA

® Sort primitives

e Fails for overlaps .

e Disrupts engine code (hot OIT) ] \
® Depth peeling [Everitt 2001, Bavoil et al 2007, x

e Unpredictably large # of passes

® A-Buffer [Carpenter 1984]




Standard OIT algorithms <X

NVIDIA

Depth complexity
from 1 (scarf)

to 10’s (grass)
to 100’s (hair)




Standard OIT algorithms <X

NVIDIA

Depth peeling:
R UEEEINER TG

as our algorithm,
S passes




Standard OIT algorithms <X

NVIDIA

® Sort primitives

e Fails for overlaps .

e Disrupts engine code (hot OIT) ] \
® Depth peeling [Everitt 2001, Bavoil et al 2007, x

e Unpredictably large # of passes

® A-Buffer [Carpenter 1984]
e Unpredictably large amount of memory




Transparency Without Sorting <X

NVIDIA

® For each pixel sample, collect statistics about the
transparent fragments along that ray
® min z, max z, count, total opacity, stranger things
e Estimating the parameters of a model

® Fast: Fixed passes, fixed memory
® Approximate




Transparency Without Sorting <X

NVIDIA

® Variance Shadow Maps [Donnelly + Lauritzen 13D 2005]
® collect mean, variance of z

® Occupancy Maps [Sintorn + Assarsson 13D 2009]
e collect counts, occupancy bit mask
® assumes equal alphas; trouble with multiple clumps

® Fourier Opacity Maps [Jansen + Bavoil I3D 2010 — next!]




NVIDIA

Stochastic Transparency:

Basic Method




 zcreen door transparency _|O] %]




Alpha-to-Coverage [Akeley 1993]

® MSAA with S samples per pixel (S=8)




Alpha-to-Coverage [Akeley 1993]

e Kill all but a*S samples
® “coverage mask”™




NVIDIA

Alpha-to-Coverage

® Two fragments with similar alpha
cover the same samples -- oops




NVIDIA

[o[F:]

® Choose sample masks randomly [OpenGL 1993]

e Correct on average, in all cases




NVIDIA

Correct on average

1C1 + (1 — Oﬂ1)(a202 -+ (1 — 042)04303)

— GﬂoverSJ




Stochastic Transparency <X

NVIDIA

Screen-door + multi-sampling + random masks.

e Correct on average, in all cases
® Foliage, Smoke, Hair, Glass
e Mixed together

® Fast

® One order-independent pass
® One MSAA z-buffer

® But noisy
-> More samples
-> More algorithms




Stochastic Transparency <X

NVIDIA

(Reference)




NVIDIA

Stochastic Transparency <X

Alg 1. Basic
8 spp




NVIDIA

Stochastic Transparency <X

L
o

Alg 1. Basic
16 spp




Stochastic Transparency <X

NVIDIA

Alg 1. Basic
32 spp




NVIDIA

Stochastic Transparency <X

Alg 1. Basic
64 spp




NVIDIA

Stochastic Transparency <X

Alg 1. Basic
912 spp




<A

NVIDIA

Motion

(video #1)




Quantization noise <X

NVIDIA

Example:
e 4x MSAA
® a=0.6

> average = 0.6




<A

NVIDIA

Alpha correction

® One extra pass to
render correct total a 0.5 *0.6/0.5 =0.6
- Correction factor

0.5 *0.6/0.5 =0.6

® One layer - exact A * 0.6/ = 0.6

® More layers -
still noisy 0.5 *0.6/0.5 =0.6

*0.6/ =0.6




Stochastic Transparency <X

NVIDIA

(Reference)




NVIDIA

Stochastic Transparency

Alg 1. Basic
8 spp




NVIDIA

Stochastic Transparency

Alg 2. Alpha correctiof
8 spp |




NVIDIA

Stochastic Transparency

Alg 3. Depth-based
8 spp




Stochastic Transparency <X

NVIDIA

(Reference)




<A

NVIDIA

Stochastic Shadows




Stochastic Shadow Map <X

NVIDIA

e A shadow map, with screen-door transparency

® Noise - higher-res map

® Look-up is just PCF




Stochastic Shadow Map <X

NVIDIA




Stochastic Shadow Map <X

NVIDIA

e Optional: Render with MSAA hardware
- Each map pixel contains S depth values

® Models vis(z) =
How much light gets from camera to depth z

(a) A stack of semitransparent objects

e Cf. Deep Shadows [Lokovic and Veach 2000]




Stochastic Shadow Map <X

NVIDIA




Stochastic Shadow Map <X

NVIDIA

Crude, but compact, regular, and parallel:

® Every pixel looks the same
® S z-values
® Z’s not sorted

® Look-up is just PCF
® S comparisons per shadow-map pixel




NVIDIA

Depth-Based

Stochastic Transparency




Transparent Shadow Map <X

NVIDIA

¢ How much light gets from camera to depth z
= How much light gets from depth z to camera
= Contribution of fragment at depth z

- Compute c as a weighted sum of fragment colors

- Any transparent shadow method
is also an OIT method.




NVIDIA

Stochastic Transparency Algorithms

® “Depth based” stochastic transparency
® Render stochastic shadow map from the camera
® Accumulation pass
e Alpha correction pass

® Basic: 1 pass
® Alpha Corrected: 2 passes

® Depth Based: 3 passes
(Per 8 spp. Add 2 passes per 8 additional spp.)




<A

NVIDIA

Motion

(video #2)




Discussion (1 of 2) <X

NVIDIA

Stochastic Transparency is

® Fast: Fixed passes, fixed memory
e Unified

® Simple

e Parallel
® No sorting!




<A

NVIDIA

Discussion (2 of 2)

® 64 spp? “The elegance of brute force”
® Connections to Deep Shadow Maps
® Connections to Monte Carlo Ray Tracing

® Turns transparent stuff into opaque stuff




Thank you! <X

NVIDIA

Thanks also to James Reilley, Lars Nordskog,
John Tran and Steve Parker at NVIDIA.

Contact:

eenderton@nvidia.com
erik.sintorn@chalmers.se

www.hvidia.com/research




