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ABSTRACT 
We present a new algorithm for best-effort simplification of po-
lygonal meshes based on principles of visual perception.  Follow-
ing previous work, we use a simple model of low-level human 
vision to estimate the perceptibility of local simplification opera-
tions in a view-dependent multitriangulation structure.  Our algo-
rithm improves on prior perceptual simplification approaches by 
accounting for textured models and dynamic lighting effects.  We 
also model more accurately the scale of visual changes resulting 
from simplification, using parameterized texture deviation to 
bound the size (represented as spatial frequency) of features de-
stroyed, created, or altered by simplifying the mesh.  The resulting 
algorithm displays many desirable properties: it is view-
dependent, sensitive to silhouettes, sensitive to underlying texture 
content, and sensitive to illumination (for example, preserving 
detail near highlight and shadow boundaries, while aggressively 
simplifying washed-out regions).  Using a unified perceptual 
model to evaluate these effects automatically accounts for their 
relative importance and balances between them, overcoming the 
need for ad hoc or hand-tuned heuristics.  

1 INTRODUCTION 
Interactive graphics has come to rely on level of detail or LOD 
techniques.  These techniques simplify the geometric representa-
tion of a scene to reduce its rendering cost, while attempting to 
preserve visual fidelity.  A great deal of excellent research has 
studied how to simplify polygonal meshes, but the question of 
how to evaluate visual fidelity to guide that simplification has 
received less attention.  Mesh simplification has been guided pri-
marily by geometric metrics. Usually, however, the important 
question is not geometric but perceptual: does the simplification 
look like the original?   

Of course, researchers in LOD have long recognized the im-
portance of perceptual issues, but have tended to address those 
issues in an ad hoc fashion.  For example, silhouettes are known 
to play a key role in object recognition and detection, and there-
fore even the earliest mesh simplification algorithms included 
heuristics to preserve detail in high curvature regions, which are 
more likely to project onto the silhouette; see for example Ros-
signac and Borrel’s vertex-clustering approach (1993), or Schroe-
der’s decimation algorithm (1992).  View-dependent simplifica-
tion research has also emphasized silhouette preservation; for 
example, Luebke and Erikson (1997) enforce a tighter screen-
space error threshold for silhouette regions than interior regions.  
Similarly, the presence and movement of specular highlights 
across a surface are known to provide important clues to its shape, 
so Xia and Varshney (1996) and Klein et al (1999) describe view-
dependent simplification schemes that preserve detail where such 
highlights are likely to appear.  Many researchers have used heu-
ristics and user-specified weights to balance the importance of 
geometric fidelity during simplification against preservation of 
appearance-related attributes, such as color, normals, and texture 

coordinates (Garland 1998, Erikson 1999, Hoppe 1999).  At a 
higher level, Funkhouser and Sequin (1993) describe a predictive 
system for choosing LODs to maintain visual quality at constant 
frame rates; their system accounts for many perceptual factors.  
Again, the system is fundamentally heuristic, with user-tunable 
parameters to control the relative importance of various perceptu-
ally-motivated factors.  

We describe a polygonal simplification algorithm grounded 
directly in principles of visual perception.  Our system is based 
throughout on a simple model of low-level vision called the con-
trast sensitivity function or CSF.  Though the CSF does not pro-
vide a complete perceptual model, the resulting system achieves 
many effects desirable in a simplification algorithm, such as pres-
ervation of silhouette boundaries and shading- or illumination-
sensitive simplification.  More importantly, these effects proceed 
naturally from the perceptual model.  This addresses the question 
of how, without heuristics or user input, to trade off such factors 
as silhouette preservation with distortion of a model’s underlying 
color or texture coordinates.  Note that we do not claim to achieve 
such effects for free; for example, we maintain normal cones to 
determine which regions occupy the visual silhouette.  But the 
importance of that silhouette status—the decision of when to sim-
plify a silhouette region rather than an interior region—derives 
from the perceptual model.   

Our work builds on research efforts by several groups.  Our 
algorithm relates most closely to the approach of Luebke and 
Hallen (2001), but applies to a much broader class of models 
since we account for textures and dynamic lighting.  They also 
emphasize imperceptible simplification, while we focus on the 
pragmatic approach of perceptually-guided best-effort rendering 
to a budget.  We also incorporate work by Cohen et al (1998) on 
bounding parameterized texture deviation, as well as the multi-
triangulation (MT) data structure by DeFloriani et al (1997, 
1998).  We discuss this and other related research in the following 
sections. 

1.1 Contributions 
To briefly summarize the contributions of this paper:  
• We extend the perceptual simplification framework of 

Luebke and Hallen (2001) to textured models.  The re-
sult: a more applicable algorithm capable of texture-
content-sensitive simplification. 

• We also use parameterized texture deviation to measure 
distortion more accurately than the Luebke-Hallen ap-
proach.  The result is better simplification for a given 
polygon count [Figure 5].   

• We introduce techniques to incorporate the effect of dy-
namic lighting calculations.  We can account for both 
specular and diffuse effects, under both Gouraud-shaded 
vertex lighting and per-pixel normal-map lighting.  The 
result is better simplification of lit models. 

• We evaluate our results against prior work both visually 
and with a public-domain image comparison toolkit. 



1.2 Motivation: a pragmatic approach 
The primary goal of prior perceptual LOD approaches has 

been imperceptible simplification: create or select a level of detail 
visually indistinguishable from the original model.  We argue that 
this approach is flawed.  First, most interactive systems forced to 
use LOD to maintain frame rate must compromise ideal visual 
quality to do so.  Put another way, if you can’t afford to render the 
original model, you probably can’t afford to render an indistin-
guishable approximation.  Second, the users of an application in 
which simplification must not be perceptible are unlikely to trust 
even a simplification algorithm that claims imperceptibility.  A 
radiologist, for example, would probably rather suffer slow frame 
rates than trust that tumors are not being simplified away.  Finally, 
and most important, at this time it does not appear feasible to 
evaluate a sophisticated model of visual perception fast enough to 
be used in interactive rendering.   

In particular, the CSF models used by researchers to date 
(see next section) provide a reasonable first approximation to low-
level perceptibility, but fail to take into account many important 
perceptual factors.  Variations between individual users, adapta-
tion to environmental lighting conditions, temporal sensitivity to 
flicker or sudden onset (as of a “pop” between LODs), chromatic 
versus achromatic contrast sensitivity, and facilitation/suppression 
via visual masking are all effects not modeled by the simple CSF.  
Some state-of-the-art models for accelerating offline rendering 
incorporate many of these effects (e.g., Ramasubramanian 1999, 
Myszkowski 2001), but require orders of magnitude longer than 
the few milliseconds available in interactive rendering.  To guar-
antee imperceptible rendering under these conditions currently 
appears out of reach, and to achieve it in practice requires making 
conservative decisions that prevent much simplification; for ex-
ample, Luebke and Hallen report that models in their system 
could be simplified two to three times further without introducing 
perceptible artifacts.  Therefore, we take a pragmatic approach 
that focuses on perceptually-guided best-effort reduction to a 
triangle budget.   

2 RELATED WORK 
2.1 Perceptually Guided Rendering 
Perceptually guided rendering is hardly a new field; many re-
searchers have investigated algorithms to accelerate rendering by 
avoiding computation for which the result will be imperceptible.  
Examples include Bolin and Meyer (1998), Myszkowki et al 
(2001), and Ramasubramanian et al (1999).  Unlike our work, 
which targets interactive rendering, most previous perceptually 
based rendering approaches have examined offline realistic ren-
dering approaches such as ray and path tracing.  These frame-
works typically require seconds or minutes to create an image, 
and can therefore employ sophisticated perceptual models such as 
that described by Ferwerda et al (1996).  State-of-the-art percep-
tual models account for much of the known behavior of the low-
level visual system, but are simply too costly for real time render-
ing.  Ramasubramanian et al, for example, report times of several 
seconds to evaluate a 512x512 image.  Such models are clearly 
out of reach for interactive rendering, which measures frame time 
in milliseconds.   

Reddy (1997) describes an early attempt to guide LOD selec-
tion entirely by a principled perceptual model.  Reddy analyzed 
the frequency content of objects and their LODs in several images 
rendered from multiple viewpoints.  If a high-resolution and a 
low-resolution LOD differed only at frequencies beyond the mod-
eled visual acuity, or greatest perceptible spatial frequency, the 
system used the low-resolution LOD.  In similar work, Scoggins 
et al (2000) analyzed the frequency content by transforming a 
prerendered reference image to frequency space and modulating 

the resulting spectrum by a perceptually modeled transfer func-
tion, then using mean-squared error to choose an appropriate 
LOD.  Both approaches rely on images from just a few view-
points, which introduces the possibility of sampling error, and 
both use a small set of discrete LODs, which prevents adaptive 
simplification (for example to preserve silhouettes). 

Lindstrom and Turk (2000) describe an image-driven ap-
proach for guiding the simplification process itself.  They render, 
from multiple viewpoints, each model that would result from 
many possible simplification operations, and evaluate the cost of 
each operation by differencing the rendered images from images 
of the original model.  Again, sampling from limited viewpoints 
and using static LODs have disadvantages for perceptually based 
simplification, but Lindstrom and Turk’s approach has the impor-
tant benefit that simplification is ultimately guided not by geomet-
ric error, nor by some combination of geometric and shading at-
tribute error, but by an estimation of what the effect the simplifi-
cation will have on the final rendering.  This approach is therefore 
close in spirit to our work, which strives to drive simplification 
directly by a model of its perceptual effect. 

Some simplification algorithms, though not guided by a per-
ceptual model, attempt to preserve the appearance of an object 
directly by using enough polygons to prevent simplification arti-
facts larger than half a pixel.  Cohen et al (1998) track the param-
eterized surface distortion to derive a screenspace bound on the 
movement of color (represented by a texture map) and lighting 
(represented by a normal map) across the surface.  We build on 
their approach and return to it below.  Similar work by Schilling 
and Klein (1998), and later work by the same authors (Klein and 
Schilling 1999), also deserves mention.  In the first publication, 
they account for texture distortion using a surface mapping tech-
nique similar to that of Cohen et al; in the second, they account 
separately for lighting artifacts in vertex-lit models using cones 
that bound the normals and halfway vectors.  Our work improves 
on these approaches by providing best-effort simplification to a 
budget, and by using a perceptual model to regulate geometric, 
texture, and lighting effects in a single framework.  This opens up 
opportunities to simplify more aggressively, for example in the 
washed-out region of a specular highlight [Figure 4]. 

Our approach most closely follows the work of Luebke and 
Hallen (2001), who also guide view-dependent simplification with 
a model of the CSF.  The key idea behind the Luebke-Hallen ap-
proach is to evaluate local simplification operations according to 
the worst-case contrast and worst-case spatial frequency of fea-
tures they could induce in the image.  This provides a principled 
way to reason about the perceptibility of the resulting simplifica-
tion.  We extend these concepts to a more general and practical 
framework for simplification of meshes.  

2.2 The Multi-Triangulation 
In this section we briefly describe the MT data structure intro-
duced by DeFloriani et al (1997). The MT is a hierarchical model 
in the form of a directed acyclic graph, represented by a set of 
nodes connected by a set of arcs.  The topmost root node of the 
graph is called the source, and the bottommost node is the drain. 

Each node of the MT represents a small change to the mesh: 
a refinement operation if we are traversing downward, or a simpli-
fication operation if we are traversing upward. We create these 
nodes from the drain to the root during an offline bottom-up sim-
plification process.  Each arc represents one or more mesh trian-
gles. The triangles removed from the model by a simplification 
operation are stored with the child arcs of the operation’s node, 
and those inserted by the corresponding refinement operation are 
associated with its parent arcs.  Thus applying the local simplifi-
cation operation encoded by the end node of an arc A (the node 
beneath A) will create the triangles encoded in the arc, and apply-



ing the simplification encoded by its start node (above A) con-
sumes the triangles.  

The arcs of the MT represent the dependencies of one mesh 
operation on another. So, for example, if we wish to perform the 
refinement indicated by a node, we must first perform the refine-
ment indicated by all of the node’s parents. Performing the node’s 
operation amounts to replacing the primitives of a node’s parent 
arcs with those of its child arcs, or vice versa. 

To extract a connected, consistent representation of the sur-
face, we generate a cut of the graph. A cut is a set of arcs that 
partitions the nodes of the MT, leaving the source node above the 
cut, and the drain node below it. In addition, if the cut contains arc 
A, then it must not contain any ancestor or descendent of A. The 
triangles of such a cut represent our input surface at some resolu-
tion. The cut representing the coarsest level of detail crosses all 
the child arcs of the source node, whereas the cut representing the 
finest level of detail crosses all the parent arcs of the drain. We 
discuss how to generate cuts representing a particular triangle 
budget in section 4.1. 

Advantages of the MT: Since all triangles in all possible 
simplifications are explicitly represented in the MT, we can pre-
compute accurate object-space error bounds, texture contrasts, 
normal cones, etc.  This is the major advantage of the MT for our 
application over other well-known simplification hierarchies, such 
as the vertex-merging trees of Hoppe (1997) and Luebke and 
Erikson (1997).  In those hierarchies the exact extent and shape of 
triangles in the neighborhood of a particular simplification (vertex 
merge) operation depends on whether nearby vertices have been 
simplified.  A secondary benefit of the MT is rendering effi-
ciency: because the triangles associated with each arc are known 
in advance, we can easily optimize arc geometry for the graphics 
hardware using triangle strips, vertex arrays, etc.  

2.3 Texture deviation 
An appropriate geometric way to measure the error of texture 
mapped surfaces is to bound the texture deviation [Cohen 98, Lee 
2000, Sander 2001]. The texture deviation is a 3D distance in 
object space between pairs of corresponding points. The corre-
spondence is established in parameter space. Thus it tells us how 
far any point on the original surface—for example the point corre-
sponding to a particular texel—may move in 3D when we replace 
the surface with the simplified version. 

One way to use this texture deviation metric in a view-
dependent level of detail system is to project it to screen space. 
We find or approximate the closest point to the eye point of the 
bounding sphere of some node. Using this distance from the eye 
to the bounding sphere, we compute the length of the texel devia-
tion vector in screen space. This measures the number of pixels of 
deviation model and bounds the shift of texels in screen-space as a 
result of simplification. 

As we will see, the 3D texture deviation may also be used in 
combination with a node’s texture contrast to bound the spatial 
frequency of its most perceptible feature and compute its percep-
tibility distance. 

3 PERCEPTUAL MODEL 
Our underlying perceptual model is the contrast sensitivity func-
tion (CSF), which predicts the low-level perceptibility of simple 
visual stimuli called contrast gratings.  A contrast grating is sinu-
soidal luminance pattern; its contrast is a function of its peak lu-
minance values Lmin and Lmax. Contrast grating studies use 
Michaelson contrast, defined as (Lmax – Lmin) / (Lmax + Lmin), and 
spatial frequency, defined as the number of cycles per degree 
(cpd) of visual arc.  The threshold contrast at a given spatial fre-
quency is the minimum contrast that can be perceived in a grating 
of that frequency, and contrast sensitivity is defined as the recip-

rocal of threshold contrast.  The CSF plots contrast sensitivity 
against spatial frequency, and so describes the range of percepti-
ble contrast gratings.  We adapt the approximation by Rushmeier 
et al (1995) of the Daly CSF model (Daly 1992): 
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Where AD represents contrast sensitivity and f represents spatial 
frequency in cycles per degree.  In practice, we represent this 
messy and expensive empirically-determined formula with a 
lookup table for speed.   

3.1 Applying the model 
We follow Luebke and Hallen’s approach of equating local sim-
plification operations to a worst-case grating.  More precisely, we 
consider the scale of features of the original surface that the sim-
plification could eliminate.  The key observation underlying their 
approach, which we only summarize below, is that the threshold 
perceptibility of those features can be conservatively equated to 
the perceptibility of a grating at the lowest frequency and maxi-
mum contrast possibly induced by that change.  

3.2 Spatial frequency 
Since peak contrast sensitivity occurs around 2-4 cycles per de-
gree, and most local simplification operations on a complex 
model will only affect much higher frequencies, we can assume 
that contrast at lower spatial frequencies is more perceptible than 
at higher frequencies.1  Since the minimum frequency component 
of an image feature that spans n degrees of visual arc is one cycle 
per 2n degrees, the maximum wavelength needed to represent a 
region of the image is twice the maximum spatial extent of that 
region.  Consequently, we can reduce finding the worst-case fre-
quency induced by a simplification operation to finding the 
screen-space extent of the affected feature.  One of our contribu-
tions is an improved method for estimating this extent by using 
texture deviation. 

Our approach is motivated by the ability of texture mapping 
to hide simplification artifacts.  This is partially due to a percep-
tual effect called visual masking, in which frequency content in 
certain channels suppresses the perceptibility of other frequencies 
in that channel [Ferwada 96].  We do not account for visual mask-
ing, leaving that as an important and interesting area for future 
work.  But texture mapping is inherently more robust to simplifi-
cation of the underlying surface than Gouraud shading for another 
reason: it decouples the surface color from the exact position and 
number of vertices.  Luebke and Hallen permit only prelit 
Gouraud-shaded models, and bound the spatial extent of a mesh 
simplification operation with a bounding sphere that contains all 
triangles involved in the operation.  By using a texture-mapped 
model, we can achieve a better bound on the size of features af-
fected by a local simplification operation.  A texture deviation of ε 
can create or destroy features on the surface no larger than 2ε.  
The texture deviation induced by a simplification is usually much 
smaller than the bounding sphere of the simplification neighbor-
hood, leading to much tighter bound on the screenspace region 
affected [Figure 5]. 

3.3 Contrast 
Given a worst-case spatial frequency for a simplification opera-
tion, determined by the maximum size of any affected features in 
the image, the next task is to find the maximum contrast of those 
                                                                 
1 We ensure that this assumption holds by clamping our worst-
case frequency to be no lower than the point of peak sensitivity.   



features.  The contrast of a feature is defined by its intrinsic lumi-
nance versus the luminance of the surrounding background.  We 
estimate these using the range of luminance covered by the patch 
of surface affected by simplification.  Since our simplification 
operation is a single edge collapse, this patch is relatively small.  
This leads to some of the most interesting contributions of our 
algorithm.  By accounting for the intrinsic contrast of the texture 
map, we achieve texture-content sensitive simplification.  Incor-
porating the lighting model into our contrast computation extends 
our approach to dynamically lit models and enables illumination 
sensitive simplification.  We describe these contrast calculations 
further in section 4.   

The silhouette status of the surface patch being simplified 
also affects the maximum resulting contrast.  If the patch, or local 
neighborhood of the simplification, lies on the silhouette, we must 
account for more than the luminance of nearby points on the sur-
face: a small change may distort the surface and could in principle 
cover or uncover the brightest or darkest spot in the scene.  Since 
we cannot easily know how much contrast this could cause, we 
conservatively assign maximal contrast to simplifications we de-
termine are on the silhouette.  As a result, silhouette regions of the 
object are simplified less aggressively – just the behavior one 
would expect in a perceptually driven simplification algorithm.  
Note however that even at these higher contrast levels silhouette 
regions can still be simplified if they represent very fine details 
(high spatial frequencies). 

3.4 Imperceptibility distance 
For best-effort perceptual simplification, we would like a model 
to predict which simplifications will have the least visual effect.  
Put another way, under the constraints of real-time rendering we 
will sometimes have to perform perceptible simplifications; we 
would like to predict which perceptible simplifications will be the 
least distracting or objectionable.  However, the CSF models 
threshold performance of the visual system, predicting the mini-
mal contrast at which a stimulus of a given spatial frequency may 
become perceptible.  Unfortunately, the CSF cannot predict su-
prathreshold performance: given two stimuli, both above thresh-
old contrast, which one is more perceptible?   

While a great deal of work has explored threshold behavior 
of the visual system, much less research has investigated su-
prathreshold performance.  We know of no computational model 
of suprathreshold perception suitable for interactive rendering; 
this is a crucial open problem in perceptually driven rendering. As 
a stopgap measure, Luebke and Hallen suggest inverting the func-
tion.  Instead of looking up the threshold contrast for a given fre-
quency, they map the contrast associated with a simplification to 
the spatial frequency at which it becomes visible.  Note that for 
the general CSF this mapping is not necessarily a single-valued 
function, but because we clamp frequencies below peak sensitiv-
ity, the threshold contrast monotonically decreases with fre-
quency.  Given the spatial frequency at which a given simplifica-
tion would become visible, and the screen-space extent of that 
simplification’s effect (which we estimate using the texture devia-
tion), we can compute the imperceptibility distance, or distance 
from the image at which the simplification should be impercepti-
ble.  The imperceptibility distance for an LOD is the maximum 
imperceptibility distance of all the local simplification operations 
used to generate it.  Since it is based on the CSF, we cannot claim 
that imperceptibility distance necessarily predicts suprathreshold 
performance, or that simplifying according to imperceptibility 
distance will necessarily provide the best simplification when 
viewed from less than that distance.  But it at least provides an 
intuitive physical measure of the fidelity achieved: for a given 
LOD, the system can report the distance from the screen at which 
the model predicts the LOD will be indistinguishable from the 

original model.  As we discuss in section 6, simplifying according 
to imperceptibility distance seems to do well in practice. 

4 RUN-TIME SIMPLIFICATION 
Here we describe our framework for run-time perceptual simplifi-
cation.  Our basic algorithm is triangle budget simplification 
driven by imperceptibility distance.  We begin with an overview 
of our technique for adapting an MT to a budget, followed by a 
description of how we modify our contrast computation to ac-
count for texture content, silhouettes, and dynamic lighting. 

4.1 BEST-EFFORT MT REFINEMENT 
Best-effort simplification aims to minimize some error criterion – 
in our case the LOD’s imperceptibility distance – while remaining 
within the user-specified triangle budget.  Recall that each node in 
the MT can be thought of as a reversible local simplification op-
eration.  These local simplifications each incur some error, cap-
tured by the node’s imperceptibility distance.  We can simplify to 
a budget using a simple greedy top-down algorithm that starts 
each frame by moving the cut to the source node (simplest model) 
and iteratively raises the node with the largest imperceptibility 
distance (thus refining the model in that region).  This top-down 
algorithm is effectively an adaptation of Luebke’s (1997) budget 
simplification technique for the MT, and is simple but slow.  
Traversing from the root usually incurs extra overhead, since 
every frame many nodes are unnecessarily evaluated, enqueued, 
shuffled around the heap, dequeued, and raised.  We improve the 
efficiency of this algorithm by using a dual-queue implementation 
similar to the ROAM terrain simplification algorithm by 
Duchaineau et al (1997).  This approach exploits temporal coher-
ence by beginning each frame with the cut from the last frame.  
One priority queue stores nodes below the cut (candidates to lift) 
and another stores nodes above the cut (candidates to drop).  Each 
frame the algorithm recomputes the imperceptibility distance of 
nodes in the queues; it then iteratively lifts the node with the 
maximum distance and drops the node with the minimum distance 
until these represent the same node.  Again, lifting a node may 
require lifting parent nodes that are below the cut while dropping 
a node may require recursively dropping child nodes, and then a 
node is lifted or dropped, it and its parents or children must be 
added to the appropriate queue.  We also amortize the cost of 
updating the queues over several frames in a fashion similar to 
Duchaineau et al and Hoppe (1997). 

4.2 Texture contrast 
On textured models, estimating the contrast of a given node is a 
straightforward process that may be precomputed prior to render-
ing.  Each node represents a mesh simplification operation over 
the triangles on a given patch of surface.  The parameterization of 
the texture lets us map this patch to the corresponding small patch 
on the original surface, generating a list of all triangles on the 
original surface that share the same portion of the texture (Schil-
ling 1998).  Given the original triangles that map to a node, we 
can precompute the luminance values of all texels covered by 
those triangles.  Section 5.1 discusses the details of this preproc-
ess.   

Note that it would be incorrect to examine only the texture 
covered by the simplified triangles in the node, since those trian-
gles may not span the entire texture spanned by the original 
model.  This highlights an important point: since we base simpli-
fication decisions on the perceptibility of features from the origi-
nal model, we must take care to always consider the cumulative, 
rather than incremental, effect of a simplification.   



4.3 Silhouettes 
As discussed in Section 3, the silhouette status of a region affects 
its possible contrast.  Accounting for the higher contrast of silhou-
ette regions provides a natural framework for silhouette preserva-
tion grounded in perceptual principles.  To detect whether nodes 
are on the silhouette, we use the standard approach described by 
Luebke (2000) of storing a silhouette normal cone with each node 
that bounds the set of triangle normals; comparing the normal 
cone, bounding sphere, and view vector lets us quickly decide 
whether the node might be on the silhouette.  The normals that 
comprise a node’s silhouette normal cone come from the triangles 
in the original model that are associated with the node, and from 
the triangles of the node itself (since a simplified surface may well 
contain sharper dihedral angles than the original). 

4.4 Dynamic Lighting 
We can also account for dynamically lit models in our contrast 
calculation.  In addition to standard Gouraud-shaded vertex light-
ing, we can apply texture deviation to apply perceptual simplifica-
tion to normal maps for extremely high quality LODs.  Normal 
maps, once an esoteric feature only available offline or on the 
most exotic hardware, are now supported on commodity graphics 
chipsets.  Visual quality of simplified models is often drastically 
increased by the use of normal mapping, so this is a useful mode 
to support.  The choice of normal map versus per-vertex lighting 
can drastically affect the perceptual quality of the resulting simpli-
fication, since per-vertex lighting effects (for example, a specular 
highlight) are interpolated by Gouraud shading across all triangles 
in a node.  In other words, a color shift caused by applying the 
local simplification operation encoded by a node can affect the 
entire region of the image spanned by the node.  With normal 
maps, on the other hand, as with texture maps, the shading is 
somewhat decoupled from the underlying mesh: the same normals 
are used for the original and simplified surface, and the extent of a 
color shift is bounded by the texture deviation.  To incorporate 
lighting effects into our system, therefore, we calculate spatial 
frequency using a feature size based on the projected extent of the 
texture deviation (for normal map lighting) or the node’s bound-
ing sphere (for per-vertex lighting). 

Integrating dynamic lighting also requires us to dynamically 
adjust the contrast associated with nodes.  The luminance range 
associated with a lit node is a function not only of its intrinsic 
color, but also of the light vector, view vector, and its shading 
normal cone.  The shading normal cone, like the silhouette normal 
cone, simply bounds the normals associated with a node; the only 
difference is that the silhouette cone is constructed from the origi-
nal triangles associated with a node, while the shading cone is 
constructed from the normal map or vertex normals spanned by 
those triangles.   

Our normal mapping algorithm was implemented as a texture 
combiner program on an nVidia GeForce3, and is simpler than the 
full OpenGL lighting model.  The luminance range at a vertex is 
given by: 
 
Luminance = Kambient*TexVal + Kdiffuse*TexVal*(N•L) + (N•H)n 
 
where TexVal is the intrinsic surface color read from a texture 
map, L is the light vector, H is the halfway vector of the Blinn-
Phong lighting model, and N is from the normal map.  The light 
source and viewer are assumed to be at infinity in this calculation.  
For per-vertex lighting, we calculate luminance using OpenGL’s 
light model for an infinite directional light source and viewer.  We 
could support more complex lighting models (e.g., point sources), 
or more than one light, at the cost of some additional computation.   

Given the lighting model, we can bound the luminance of the 
diffuse contribution by calculating the vector encompassed by the 

shading normal cone that is closest in direction to L and the vector 
furthest in direction from L.  Similarly, we find the range of 
specular contribution using the halfway vector.  Note that this 
computation is similar to that of Klein and Schilling (1999).   

5 PREPROCESSING 
We build our MTs by progressive edge collapse simplification 
with the goal of minimizing object-space texture deviation.  We 
then run a preprocessing stage that augments an arbitrary MT with 
the structures used by our perceptual run-time simplification.  The 
preprocessing maps nodes in the MT to the triangles in the origi-
nal model to which they correspond in the texture parameteriza-
tion, and calculates texture luminance ranges, bounding spheres, 
and normal cones from those triangles.   

To facilitate mapping nodes to their corresponding full-
resolution triangles, we build an image pyramid on the original 
textures.  The bottom level of this pyramid represents the full-
resolution texture, and we store for every texel a list of the trian-
gles that intersect it.  From these lists, we can compute a bounding 
sphere that contains all triangles that map to that texel, normal 
cones that bound the normals of the triangles and vertices or nor-
mal map, and a luminance range Lmin – Lmax for those triangles.  
We can propagate this information up the pyramid to represent 
bounding spheres, normal cones, and luminance ranges for pro-
gressively larger patches of the original surface. 

Once the image pyramid is built, we determine the percep-
tual structures for a given node by hierarchically rasterizing the 
triangles of the node into the pyramid, and updating the bounding 
sphere, normal cones, and luminance ranges according to the re-
gions those triangles cover in the pyramid.   If a region of the 
pyramid is completely covered, we can use the bounds stored with 
the region directly; if a region partially intersects a triangle, we 
recursively test the triangle against the next level of the pyramid.  
The hierarchical evaluation makes the precomputation fairly effi-
cient; preprocessing the armadillo model, with over 100 textures 
and over 400,000 triangles, takes about 3 minutes.  We believe 
this could be further accelerated by clever use of the graphics 
hardware, but have not felt the need to do so. 

A note about calculating luminance: we compute luminance 
using the standard RGB Y coefficients for modern CRT moni-
tors in Recommendation 109 (Poynton 1998), gamma corrected 
for our display hardware and accounting for the measured ambient 
light level in our lab.  Clearly much more care and calibration 
would be required to guarantee true imperceptible simplification; 
however, for our best-effort approach a rough approximation that 
captures the shape of the curve seems sufficient. 

6 RESULTS AND EVALUATION 
The preceding sections and figures demonstrate the visual results 
of our approach, and highlight the simplification effects that it 
accounts for: silhouette preservation, texture-content sensitive 
simplification, and illumination sensitive simplification.  Here we 
visually and quantitatively compare the quality of the resulting 
simplifications to those produced by other algorithms.  

As a fair comparison, we decided to contrast our system with 
a view-dependent implementation of the appearance-preserving 
simplification or APS scheme of Cohen et al (1998).  We should 
emphasize that this is a rigorous comparison against one of the 
higher fidelity simplification algorithms available.  APS was the 
first simplification algorithm to attempt strong guarantees on the 
rendered fidelity of LOD; it focuses on bounding the possible 
screen-space distortion caused by simplification.  Like our sys-
tem, APS measures parameterized distortion and factors appear-
ance into color (represented by texture maps) and shading (repre-
sented with normal maps).  Whereas the original algorithm uses 
this bound to choose a static LOD, the view-dependent version 



uses our multitriangulation implementation to simplify to a budget 
while minimizing projected screen-space error of nodes on the 
MT cut.  We also compare our system to a view-independent 
implementation of APS that simplifies the multitriangulation ac-
cording to object-space texture deviation, as well as a heuristic 
approach that uses APS but multiplies the screenspace texture 
deviation tenfold for silhouette regions.  [Figures 1-3].   

We also make a limited comparison to the Luebke-Hallen 
approach—limited because a fair comparison is difficult.  The 
Luebke-Hallen algorithm does not support dynamic lighting, so 
we use a prelit model acquired from a Cyberware laser scanner.  
Also, the Luebke-Hallen approach does not support textured mod-
els, but it would be grossly unfair to compare a Gouraud-shaded 
model with significant reduction in polygon count to a similarly-
reduced texture-mapped model. We therefore extend the Luebke-
Hallen approach to render with and compute contrast from the 
texture map.  Beyond lighting and texturing, the major differences 
between our algorithms are the use of the multitriangulation ver-
sus VDSlib vertex merging, and the use of node bounding sphere 
versus texture deviation to estimate feature size and spatial fre-
quency.  We decided to implement the Luebke-Hallen algorithm 
in our MT framework using node radius rather than texture devia-
tion; as Figure 5 shows, the tighter bound provided by texture 
deviation improves the quality of the simplification. 

In addition to visual inspection, we also report two quantita-
tive measures of image fidelity: RMS and JND.  RMS is simple 
root-mean-squared error based on the pairwise difference of pix-
els.  RMS is much-criticized as an image fidelity metric, but does 
give an intuitive feeling for how much the pixels are changing.  
The JND metric represents the just-noticeable-difference count 
returned by DCTune, a public-domain software package by Wat-
son (1994) used for optimizing the discrete cosine transform 
(DCT) basis functions to design custom JPEG quantization matri-
ces.  One feature of DCTune, designed to evaluate quanitization 
errors in image compression, takes as input two images and re-
turns a measure of their similarly in JNDs.  DCTune uses a per-
ceptual color space and accounts for luminance masking (local 
adaptation) as well as contrast masking (facilitation and suppres-
sion of one pattern by another).  We include plots of RMS error 
and JNDs against triangle budget for different models, textures, 
and lighting conditions [Figures 1,2,3,5]. 

As we expect, using a perceptual model generally provides 
improved simplification.  The benefit is most pronounced on ver-
tex-lit models, primarily because the distortion and tessellation 
artifacts in specular highlights are highly perceptible.  Using nor-
mal maps maintains smooth highlights even at low resolutions.  
Under these conditions the primary differences between our algo-
rithm and APS are the ability to simplify low-contrast regions 
(washed out highlights or dark shadow), and the ability to pre-
serve high-contrast areas such as silhouettes.  Except at certain 
simplification levels, these effects are less important visually.   

7  DISCUSSION AND FUTURE WORK 
Just as view-dependent algorithms gain benefits and incur costs 
not present in view-independent systems, our perceptual model 
provides intelligent simplification not present in other algo-
rithms—aggressive simplification in low-contrast regions, such as 
uniform texture areas and washed-out specular highlights, along 
with intelligent refinement at specular highlights and silhouette 
regions—but comes at a computational cost.  Other algorithms 
have been augmented with manually weighted heuristics to ac-
count for most of these opportunities, such as Luebke and Erik-
son’s use of tighter error thresholds for silhouettes.  One could 
argue that evaluating such heuristics probably requires less com-
putation than our perceptual model, and that heuristics could be 
developed to account for all the simplification effects we support.  

But this would be missing the point: our chief contribution is a 
way to avoid ad hoc hand-tuned heuristics—or perhaps, in future 
work, to guide their development—by reasoning directly from 
principles of visual perception. 

Avenues for future work 
While our initial system shows promise, many avenues of future 
work remain.  Perhaps the most important topic for future re-
search is the integration of better perceptual models.  We would 
like to extend our perceptual model to include important effects 
such as local adaptation (TVI effects), chromatic contrast sensitiv-
ity, and temporal effects (flicker sensitivity, sudden onset).  In 
particular, it would seem fruitful to investigate efficient ways to 
model visual masking.  The frequency content of textures and 
normal maps has a strong effect on the perceptibility of the sim-
plification; we believe a simple model of visual masking, perhaps 
based on pre-computed frequency content in the textures, would 
often enable much more aggressive simplification.  Along these 
lines the work on perceptual texture caching by Dumont et al 
(2001) appears promising for future investigation.  More gener-
ally, a dire need exists for adequate models of suprathreshold 
perceptibility that are efficient enough for an interactive frame-
work. 

One useful extension would be to account for MIP-map fil-
tering when calculating texture contrast.  Many textures have 
noise or high-frequency components that introduce a great deal of 
contrast to our algorithm, which simply assigns a node a contrast 
from the luminance range it covers in the texture.  Often these 
high-frequency components are filtered out in the first or second 
MIP level, leaving a low-contrast texture that could be simplified 
much more aggressively.  Note that by not accounting for MIP-
mapping we are at least treating the model conservatively, since 
MIP-mapping should only reduce contrast and hence perceptibil-
ity.   

We would also like to investigate optimizing the MT con-
struction for perceptual simplification.  Currently we simply apply 
our perceptual metrics to pre-built MTs, which were constructed 
with the goal of minimizing texture deviation, but building MTs 
tailored for given textures should allow the construction process 
more leeway, for example in areas of low contrast.  It also seems 
helpful to investigate “quick and dirty” parameterizations that 
could be used to apply our algorithm to non-textured models.  A 
great deal of excellent research has been carried out in the realm 
of automatic parameterization, but it remains a difficult problem.  
However, even a simplistic approach should suffice for our 
method, which simply needs to establish a correspondence be-
tween nodes in the MT and the original triangles to which they 
relate.    
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Figure 1: Comparison of different algorithms on the vertex-lit torus model (top), reported in Just Noticeable 
Differences using the DCTune software package (middle) and RMS pixel difference in luminance (bottom).  
The ability of the perceptual metric to predict high perceptible artifacts in regions of specular highlights, 
and allocate more triangles to those regions, gives it an advantage over other algorithms here. 
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Normal Mapped Red Armadillo
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Figure 2: Comparison of different algorithms on the normal-mapped armadillo model (inset), reported in 
Just Noticeable Differences using the DCTune software package (top) and RMS pixel difference in lumi-
nance (bottom).  As expected, with normal mapping enabled the benefits of perceptual simplification are 
comparatively slight. 
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Vertex Lit Red Armadillo
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Figure 3: Comparison of different algorithms on the vertex-lit armadillo model (inset), reported in Just No-
ticeable Differences using the DCTune software package (top) and RMS pixel difference in luminance (bot-
tom).  The ability of the perceptual metric to predict high perceptible artifacts in regions of specular high-
lights, and allocate more triangles to those regions, gives it an advantage over other algorithms here. 



Figure 4: Contrast calculation and simplification effects.  The original model shown at full resolution (a) with 57660 triangles and sim-
plified (b) by 50%.   The close-up (c) illustrates preservation of silhouettes and extra simplification in low-contrast areas such as 
washed-out specular highlights and deeply shadowed regions.  Image (d) shows the contrast due only to dynamic lighting; (e) shows 
the contrast due solely to the texture; (f) shows the combined contrast used to generate the simplifications shown in (b) and (c). 
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Figure 5: Comparison of Luebke-Hallen approach (driven by node radius) and our perceptual simplification 
approach (driven by texture deviation) on a pre-lit textured model (a laser scan of a human face, inset).  Note 
that the holes (in the left pupil and beard) are artifacts of the data and not our simplification algorithm). 
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