
Perceptually Guided Simplification of Lit, Textured Meshes
David Luebke1, Jonathan Cohen2, Nathaniel Williams1, Mike Kelly1, Brenden Schubert1

1 University of Virginia, 2Johns Hopkins University

University of Virginia technical report CS-2002-03

ABSTRACT
We present a new algorithm for best-effort simplification of po-
lygonal meshes based on principles of visual perception. Follow-
ing previous work, we use a simple model of low-level human
vision to estimate the perceptibility of local simplification opera-
tions in a view-dependent multitriangulation structure. Our algo-
rithm improves on prior perceptual simplification approaches by
accounting for textured models and dynamic lighting effects. We
also model more accurately the scale of visual changes resulting
from simplification, using parameterized texture deviation to
bound the size (represented as spatial frequency) of features de-
stroyed, created, or altered by simplifying the mesh. The resulting
algorithm displays many desirable properties: it is view-
dependent, sensitive to silhouettes, sensitive to underlying texture
content, and sensitive to illumination (for example, preserving
detail near highlight and shadow boundaries, while aggressively
simplifying washed-out regions). Using a unified perceptual
model to evaluate these effects automatically accounts for their
relative importance and balances between them, overcoming the
need for ad hoc or hand-tuned heuristics.

1 INTRODUCTION
Interactive graphics has come to rely on level of detail or LOD
techniques. These techniques simplify the geometric representa-
tion of a scene to reduce its rendering cost, while attempting to
preserve visual fidelity. A great deal of excellent research has
studied how to simplify polygonal meshes, but the question of
how to evaluate visual fidelity to guide that simplification has
received less attention. Mesh simplification has been guided pri-
marily by geometric metrics. Usually, however, the important
question is not geometric but perceptual: does the simplification
look like the original?

Of course, researchers in LOD have long recognized the im-
portance of perceptual issues, but have tended to address those
issues in an ad hoc fashion. For example, silhouettes are known
to play a key role in object recognition and detection, and there-
fore even the earliest mesh simplification algorithms included
heuristics to preserve detail in high curvature regions, which are
more likely to project onto the silhouette; see for example Ros-
signac and Borrel’s vertex-clustering approach (1993), or Schroe-
der’s decimation algorithm (1992). View-dependent simplifica-
tion research has also emphasized silhouette preservation; for
example, Luebke and Erikson (1997) enforce a tighter screen-
space error threshold for silhouette regions than interior regions.
Similarly, the presence and movement of specular highlights
across a surface are known to provide important clues to its shape,
so Xia and Varshney (1996) and Klein et al (1999) describe view-
dependent simplification schemes that preserve detail where such
highlights are likely to appear. Many researchers have used heu-
ristics and user-specified weights to balance the importance of
geometric fidelity during simplification against preservation of
appearance-related attributes, such as color, normals, and texture

coordinates (Garland 1998, Erikson 1999, Hoppe 1999). At a
higher level, Funkhouser and Sequin (1993) describe a predictive
system for choosing LODs to maintain visual quality at constant
frame rates; their system accounts for many perceptual factors.
Again, the system is fundamentally heuristic, with user-tunable
parameters to control the relative importance of various perceptu-
ally-motivated factors.

We describe a polygonal simplification algorithm grounded
directly in principles of visual perception. Our system is based
throughout on a simple model of low-level vision called the con-
trast sensitivity function or CSF. Though the CSF does not pro-
vide a complete perceptual model, the resulting system achieves
many effects desirable in a simplification algorithm, such as pres-
ervation of silhouette boundaries and shading- or illumination-
sensitive simplification. More importantly, these effects proceed
naturally from the perceptual model. This addresses the question
of how, without heuristics or user input, to trade off such factors
as silhouette preservation with distortion of a model’s underlying
color or texture coordinates. Note that we do not claim to achieve
such effects for free; for example, we maintain normal cones to
determine which regions occupy the visual silhouette. But the
importance of that silhouette status—the decision of when to sim-
plify a silhouette region rather than an interior region—derives
from the perceptual model.

Our work builds on research efforts by several groups. Our
algorithm relates most closely to the approach of Luebke and
Hallen (2001), but applies to a much broader class of models
since we account for textures and dynamic lighting. They also
emphasize imperceptible simplification, while we focus on the
pragmatic approach of perceptually-guided best-effort rendering
to a budget. We also incorporate work by Cohen et al (1998) on
bounding parameterized texture deviation, as well as the multi-
triangulation (MT) data structure by DeFloriani et al (1997,
1998). We discuss this and other related research in the following
sections.

1.1 Contributions
To briefly summarize the contributions of this paper:
• We extend the perceptual simplification framework of

Luebke and Hallen (2001) to textured models. The re-
sult: a more applicable algorithm capable of texture-
content-sensitive simplification.

• We also use parameterized texture deviation to measure
distortion more accurately than the Luebke-Hallen ap-
proach. The result is better simplification for a given
polygon count [Figure 5].

• We introduce techniques to incorporate the effect of dy-
namic lighting calculations. We can account for both
specular and diffuse effects, under both Gouraud-shaded
vertex lighting and per-pixel normal-map lighting. The
result is better simplification of lit models.

• We evaluate our results against prior work both visually
and with a public-domain image comparison toolkit.

1.2 Motivation: a pragmatic approach
The primary goal of prior perceptual LOD approaches has

been imperceptible simplification: create or select a level of detail
visually indistinguishable from the original model. We argue that
this approach is flawed. First, most interactive systems forced to
use LOD to maintain frame rate must compromise ideal visual
quality to do so. Put another way, if you can’t afford to render the
original model, you probably can’t afford to render an indistin-
guishable approximation. Second, the users of an application in
which simplification must not be perceptible are unlikely to trust
even a simplification algorithm that claims imperceptibility. A
radiologist, for example, would probably rather suffer slow frame
rates than trust that tumors are not being simplified away. Finally,
and most important, at this time it does not appear feasible to
evaluate a sophisticated model of visual perception fast enough to
be used in interactive rendering.

In particular, the CSF models used by researchers to date
(see next section) provide a reasonable first approximation to low-
level perceptibility, but fail to take into account many important
perceptual factors. Variations between individual users, adapta-
tion to environmental lighting conditions, temporal sensitivity to
flicker or sudden onset (as of a “pop” between LODs), chromatic
versus achromatic contrast sensitivity, and facilitation/suppression
via visual masking are all effects not modeled by the simple CSF.
Some state-of-the-art models for accelerating offline rendering
incorporate many of these effects (e.g., Ramasubramanian 1999,
Myszkowski 2001), but require orders of magnitude longer than
the few milliseconds available in interactive rendering. To guar-
antee imperceptible rendering under these conditions currently
appears out of reach, and to achieve it in practice requires making
conservative decisions that prevent much simplification; for ex-
ample, Luebke and Hallen report that models in their system
could be simplified two to three times further without introducing
perceptible artifacts. Therefore, we take a pragmatic approach
that focuses on perceptually-guided best-effort reduction to a
triangle budget.

2 RELATED WORK
2.1 Perceptually Guided Rendering
Perceptually guided rendering is hardly a new field; many re-
searchers have investigated algorithms to accelerate rendering by
avoiding computation for which the result will be imperceptible.
Examples include Bolin and Meyer (1998), Myszkowki et al
(2001), and Ramasubramanian et al (1999). Unlike our work,
which targets interactive rendering, most previous perceptually
based rendering approaches have examined offline realistic ren-
dering approaches such as ray and path tracing. These frame-
works typically require seconds or minutes to create an image,
and can therefore employ sophisticated perceptual models such as
that described by Ferwerda et al (1996). State-of-the-art percep-
tual models account for much of the known behavior of the low-
level visual system, but are simply too costly for real time render-
ing. Ramasubramanian et al, for example, report times of several
seconds to evaluate a 512x512 image. Such models are clearly
out of reach for interactive rendering, which measures frame time
in milliseconds.

Reddy (1997) describes an early attempt to guide LOD selec-
tion entirely by a principled perceptual model. Reddy analyzed
the frequency content of objects and their LODs in several images
rendered from multiple viewpoints. If a high-resolution and a
low-resolution LOD differed only at frequencies beyond the mod-
eled visual acuity, or greatest perceptible spatial frequency, the
system used the low-resolution LOD. In similar work, Scoggins
et al (2000) analyzed the frequency content by transforming a
prerendered reference image to frequency space and modulating

the resulting spectrum by a perceptually modeled transfer func-
tion, then using mean-squared error to choose an appropriate
LOD. Both approaches rely on images from just a few view-
points, which introduces the possibility of sampling error, and
both use a small set of discrete LODs, which prevents adaptive
simplification (for example to preserve silhouettes).

Lindstrom and Turk (2000) describe an image-driven ap-
proach for guiding the simplification process itself. They render,
from multiple viewpoints, each model that would result from
many possible simplification operations, and evaluate the cost of
each operation by differencing the rendered images from images
of the original model. Again, sampling from limited viewpoints
and using static LODs have disadvantages for perceptually based
simplification, but Lindstrom and Turk’s approach has the impor-
tant benefit that simplification is ultimately guided not by geomet-
ric error, nor by some combination of geometric and shading at-
tribute error, but by an estimation of what the effect the simplifi-
cation will have on the final rendering. This approach is therefore
close in spirit to our work, which strives to drive simplification
directly by a model of its perceptual effect.

Some simplification algorithms, though not guided by a per-
ceptual model, attempt to preserve the appearance of an object
directly by using enough polygons to prevent simplification arti-
facts larger than half a pixel. Cohen et al (1998) track the param-
eterized surface distortion to derive a screenspace bound on the
movement of color (represented by a texture map) and lighting
(represented by a normal map) across the surface. We build on
their approach and return to it below. Similar work by Schilling
and Klein (1998), and later work by the same authors (Klein and
Schilling 1999), also deserves mention. In the first publication,
they account for texture distortion using a surface mapping tech-
nique similar to that of Cohen et al; in the second, they account
separately for lighting artifacts in vertex-lit models using cones
that bound the normals and halfway vectors. Our work improves
on these approaches by providing best-effort simplification to a
budget, and by using a perceptual model to regulate geometric,
texture, and lighting effects in a single framework. This opens up
opportunities to simplify more aggressively, for example in the
washed-out region of a specular highlight [Figure 4].

Our approach most closely follows the work of Luebke and
Hallen (2001), who also guide view-dependent simplification with
a model of the CSF. The key idea behind the Luebke-Hallen ap-
proach is to evaluate local simplification operations according to
the worst-case contrast and worst-case spatial frequency of fea-
tures they could induce in the image. This provides a principled
way to reason about the perceptibility of the resulting simplifica-
tion. We extend these concepts to a more general and practical
framework for simplification of meshes.

2.2 The Multi-Triangulation
In this section we briefly describe the MT data structure intro-
duced by DeFloriani et al (1997). The MT is a hierarchical model
in the form of a directed acyclic graph, represented by a set of
nodes connected by a set of arcs. The topmost root node of the
graph is called the source, and the bottommost node is the drain.

Each node of the MT represents a small change to the mesh:
a refinement operation if we are traversing downward, or a simpli-
fication operation if we are traversing upward. We create these
nodes from the drain to the root during an offline bottom-up sim-
plification process. Each arc represents one or more mesh trian-
gles. The triangles removed from the model by a simplification
operation are stored with the child arcs of the operation’s node,
and those inserted by the corresponding refinement operation are
associated with its parent arcs. Thus applying the local simplifi-
cation operation encoded by the end node of an arc A (the node
beneath A) will create the triangles encoded in the arc, and apply-

ing the simplification encoded by its start node (above A) con-
sumes the triangles.

The arcs of the MT represent the dependencies of one mesh
operation on another. So, for example, if we wish to perform the
refinement indicated by a node, we must first perform the refine-
ment indicated by all of the node’s parents. Performing the node’s
operation amounts to replacing the primitives of a node’s parent
arcs with those of its child arcs, or vice versa.

To extract a connected, consistent representation of the sur-
face, we generate a cut of the graph. A cut is a set of arcs that
partitions the nodes of the MT, leaving the source node above the
cut, and the drain node below it. In addition, if the cut contains arc
A, then it must not contain any ancestor or descendent of A. The
triangles of such a cut represent our input surface at some resolu-
tion. The cut representing the coarsest level of detail crosses all
the child arcs of the source node, whereas the cut representing the
finest level of detail crosses all the parent arcs of the drain. We
discuss how to generate cuts representing a particular triangle
budget in section 4.1.

Advantages of the MT: Since all triangles in all possible
simplifications are explicitly represented in the MT, we can pre-
compute accurate object-space error bounds, texture contrasts,
normal cones, etc. This is the major advantage of the MT for our
application over other well-known simplification hierarchies, such
as the vertex-merging trees of Hoppe (1997) and Luebke and
Erikson (1997). In those hierarchies the exact extent and shape of
triangles in the neighborhood of a particular simplification (vertex
merge) operation depends on whether nearby vertices have been
simplified. A secondary benefit of the MT is rendering effi-
ciency: because the triangles associated with each arc are known
in advance, we can easily optimize arc geometry for the graphics
hardware using triangle strips, vertex arrays, etc.

2.3 Texture deviation
An appropriate geometric way to measure the error of texture
mapped surfaces is to bound the texture deviation [Cohen 98, Lee
2000, Sander 2001]. The texture deviation is a 3D distance in
object space between pairs of corresponding points. The corre-
spondence is established in parameter space. Thus it tells us how
far any point on the original surface—for example the point corre-
sponding to a particular texel—may move in 3D when we replace
the surface with the simplified version.

One way to use this texture deviation metric in a view-
dependent level of detail system is to project it to screen space.
We find or approximate the closest point to the eye point of the
bounding sphere of some node. Using this distance from the eye
to the bounding sphere, we compute the length of the texel devia-
tion vector in screen space. This measures the number of pixels of
deviation model and bounds the shift of texels in screen-space as a
result of simplification.

As we will see, the 3D texture deviation may also be used in
combination with a node’s texture contrast to bound the spatial
frequency of its most perceptible feature and compute its percep-
tibility distance.

3 PERCEPTUAL MODEL
Our underlying perceptual model is the contrast sensitivity func-
tion (CSF), which predicts the low-level perceptibility of simple
visual stimuli called contrast gratings. A contrast grating is sinu-
soidal luminance pattern; its contrast is a function of its peak lu-
minance values Lmin and Lmax. Contrast grating studies use
Michaelson contrast, defined as (Lmax – Lmin) / (Lmax + Lmin), and
spatial frequency, defined as the number of cycles per degree
(cpd) of visual arc. The threshold contrast at a given spatial fre-
quency is the minimum contrast that can be perceived in a grating
of that frequency, and contrast sensitivity is defined as the recip-

rocal of threshold contrast. The CSF plots contrast sensitivity
against spatial frequency, and so describes the range of percepti-
ble contrast gratings. We adapt the approximation by Rushmeier
et al (1995) of the Daly CSF model (Daly 1992):

rf
D eef

f
fA 3.03.0

2.0

5.1 06.0142.11008.0)(+







+= −

−

Where AD represents contrast sensitivity and f represents spatial
frequency in cycles per degree. In practice, we represent this
messy and expensive empirically-determined formula with a
lookup table for speed.

3.1 Applying the model
We follow Luebke and Hallen’s approach of equating local sim-
plification operations to a worst-case grating. More precisely, we
consider the scale of features of the original surface that the sim-
plification could eliminate. The key observation underlying their
approach, which we only summarize below, is that the threshold
perceptibility of those features can be conservatively equated to
the perceptibility of a grating at the lowest frequency and maxi-
mum contrast possibly induced by that change.

3.2 Spatial frequency
Since peak contrast sensitivity occurs around 2-4 cycles per de-
gree, and most local simplification operations on a complex
model will only affect much higher frequencies, we can assume
that contrast at lower spatial frequencies is more perceptible than
at higher frequencies.1 Since the minimum frequency component
of an image feature that spans n degrees of visual arc is one cycle
per 2n degrees, the maximum wavelength needed to represent a
region of the image is twice the maximum spatial extent of that
region. Consequently, we can reduce finding the worst-case fre-
quency induced by a simplification operation to finding the
screen-space extent of the affected feature. One of our contribu-
tions is an improved method for estimating this extent by using
texture deviation.

Our approach is motivated by the ability of texture mapping
to hide simplification artifacts. This is partially due to a percep-
tual effect called visual masking, in which frequency content in
certain channels suppresses the perceptibility of other frequencies
in that channel [Ferwada 96]. We do not account for visual mask-
ing, leaving that as an important and interesting area for future
work. But texture mapping is inherently more robust to simplifi-
cation of the underlying surface than Gouraud shading for another
reason: it decouples the surface color from the exact position and
number of vertices. Luebke and Hallen permit only prelit
Gouraud-shaded models, and bound the spatial extent of a mesh
simplification operation with a bounding sphere that contains all
triangles involved in the operation. By using a texture-mapped
model, we can achieve a better bound on the size of features af-
fected by a local simplification operation. A texture deviation of ε
can create or destroy features on the surface no larger than 2ε.
The texture deviation induced by a simplification is usually much
smaller than the bounding sphere of the simplification neighbor-
hood, leading to much tighter bound on the screenspace region
affected [Figure 5].

3.3 Contrast
Given a worst-case spatial frequency for a simplification opera-
tion, determined by the maximum size of any affected features in
the image, the next task is to find the maximum contrast of those

1 We ensure that this assumption holds by clamping our worst-
case frequency to be no lower than the point of peak sensitivity.

features. The contrast of a feature is defined by its intrinsic lumi-
nance versus the luminance of the surrounding background. We
estimate these using the range of luminance covered by the patch
of surface affected by simplification. Since our simplification
operation is a single edge collapse, this patch is relatively small.
This leads to some of the most interesting contributions of our
algorithm. By accounting for the intrinsic contrast of the texture
map, we achieve texture-content sensitive simplification. Incor-
porating the lighting model into our contrast computation extends
our approach to dynamically lit models and enables illumination
sensitive simplification. We describe these contrast calculations
further in section 4.

The silhouette status of the surface patch being simplified
also affects the maximum resulting contrast. If the patch, or local
neighborhood of the simplification, lies on the silhouette, we must
account for more than the luminance of nearby points on the sur-
face: a small change may distort the surface and could in principle
cover or uncover the brightest or darkest spot in the scene. Since
we cannot easily know how much contrast this could cause, we
conservatively assign maximal contrast to simplifications we de-
termine are on the silhouette. As a result, silhouette regions of the
object are simplified less aggressively – just the behavior one
would expect in a perceptually driven simplification algorithm.
Note however that even at these higher contrast levels silhouette
regions can still be simplified if they represent very fine details
(high spatial frequencies).

3.4 Imperceptibility distance
For best-effort perceptual simplification, we would like a model
to predict which simplifications will have the least visual effect.
Put another way, under the constraints of real-time rendering we
will sometimes have to perform perceptible simplifications; we
would like to predict which perceptible simplifications will be the
least distracting or objectionable. However, the CSF models
threshold performance of the visual system, predicting the mini-
mal contrast at which a stimulus of a given spatial frequency may
become perceptible. Unfortunately, the CSF cannot predict su-
prathreshold performance: given two stimuli, both above thresh-
old contrast, which one is more perceptible?

While a great deal of work has explored threshold behavior
of the visual system, much less research has investigated su-
prathreshold performance. We know of no computational model
of suprathreshold perception suitable for interactive rendering;
this is a crucial open problem in perceptually driven rendering. As
a stopgap measure, Luebke and Hallen suggest inverting the func-
tion. Instead of looking up the threshold contrast for a given fre-
quency, they map the contrast associated with a simplification to
the spatial frequency at which it becomes visible. Note that for
the general CSF this mapping is not necessarily a single-valued
function, but because we clamp frequencies below peak sensitiv-
ity, the threshold contrast monotonically decreases with fre-
quency. Given the spatial frequency at which a given simplifica-
tion would become visible, and the screen-space extent of that
simplification’s effect (which we estimate using the texture devia-
tion), we can compute the imperceptibility distance, or distance
from the image at which the simplification should be impercepti-
ble. The imperceptibility distance for an LOD is the maximum
imperceptibility distance of all the local simplification operations
used to generate it. Since it is based on the CSF, we cannot claim
that imperceptibility distance necessarily predicts suprathreshold
performance, or that simplifying according to imperceptibility
distance will necessarily provide the best simplification when
viewed from less than that distance. But it at least provides an
intuitive physical measure of the fidelity achieved: for a given
LOD, the system can report the distance from the screen at which
the model predicts the LOD will be indistinguishable from the

original model. As we discuss in section 6, simplifying according
to imperceptibility distance seems to do well in practice.

4 RUN-TIME SIMPLIFICATION
Here we describe our framework for run-time perceptual simplifi-
cation. Our basic algorithm is triangle budget simplification
driven by imperceptibility distance. We begin with an overview
of our technique for adapting an MT to a budget, followed by a
description of how we modify our contrast computation to ac-
count for texture content, silhouettes, and dynamic lighting.

4.1 BEST-EFFORT MT REFINEMENT
Best-effort simplification aims to minimize some error criterion –
in our case the LOD’s imperceptibility distance – while remaining
within the user-specified triangle budget. Recall that each node in
the MT can be thought of as a reversible local simplification op-
eration. These local simplifications each incur some error, cap-
tured by the node’s imperceptibility distance. We can simplify to
a budget using a simple greedy top-down algorithm that starts
each frame by moving the cut to the source node (simplest model)
and iteratively raises the node with the largest imperceptibility
distance (thus refining the model in that region). This top-down
algorithm is effectively an adaptation of Luebke’s (1997) budget
simplification technique for the MT, and is simple but slow.
Traversing from the root usually incurs extra overhead, since
every frame many nodes are unnecessarily evaluated, enqueued,
shuffled around the heap, dequeued, and raised. We improve the
efficiency of this algorithm by using a dual-queue implementation
similar to the ROAM terrain simplification algorithm by
Duchaineau et al (1997). This approach exploits temporal coher-
ence by beginning each frame with the cut from the last frame.
One priority queue stores nodes below the cut (candidates to lift)
and another stores nodes above the cut (candidates to drop). Each
frame the algorithm recomputes the imperceptibility distance of
nodes in the queues; it then iteratively lifts the node with the
maximum distance and drops the node with the minimum distance
until these represent the same node. Again, lifting a node may
require lifting parent nodes that are below the cut while dropping
a node may require recursively dropping child nodes, and then a
node is lifted or dropped, it and its parents or children must be
added to the appropriate queue. We also amortize the cost of
updating the queues over several frames in a fashion similar to
Duchaineau et al and Hoppe (1997).

4.2 Texture contrast
On textured models, estimating the contrast of a given node is a
straightforward process that may be precomputed prior to render-
ing. Each node represents a mesh simplification operation over
the triangles on a given patch of surface. The parameterization of
the texture lets us map this patch to the corresponding small patch
on the original surface, generating a list of all triangles on the
original surface that share the same portion of the texture (Schil-
ling 1998). Given the original triangles that map to a node, we
can precompute the luminance values of all texels covered by
those triangles. Section 5.1 discusses the details of this preproc-
ess.

Note that it would be incorrect to examine only the texture
covered by the simplified triangles in the node, since those trian-
gles may not span the entire texture spanned by the original
model. This highlights an important point: since we base simpli-
fication decisions on the perceptibility of features from the origi-
nal model, we must take care to always consider the cumulative,
rather than incremental, effect of a simplification.

4.3 Silhouettes
As discussed in Section 3, the silhouette status of a region affects
its possible contrast. Accounting for the higher contrast of silhou-
ette regions provides a natural framework for silhouette preserva-
tion grounded in perceptual principles. To detect whether nodes
are on the silhouette, we use the standard approach described by
Luebke (2000) of storing a silhouette normal cone with each node
that bounds the set of triangle normals; comparing the normal
cone, bounding sphere, and view vector lets us quickly decide
whether the node might be on the silhouette. The normals that
comprise a node’s silhouette normal cone come from the triangles
in the original model that are associated with the node, and from
the triangles of the node itself (since a simplified surface may well
contain sharper dihedral angles than the original).

4.4 Dynamic Lighting
We can also account for dynamically lit models in our contrast
calculation. In addition to standard Gouraud-shaded vertex light-
ing, we can apply texture deviation to apply perceptual simplifica-
tion to normal maps for extremely high quality LODs. Normal
maps, once an esoteric feature only available offline or on the
most exotic hardware, are now supported on commodity graphics
chipsets. Visual quality of simplified models is often drastically
increased by the use of normal mapping, so this is a useful mode
to support. The choice of normal map versus per-vertex lighting
can drastically affect the perceptual quality of the resulting simpli-
fication, since per-vertex lighting effects (for example, a specular
highlight) are interpolated by Gouraud shading across all triangles
in a node. In other words, a color shift caused by applying the
local simplification operation encoded by a node can affect the
entire region of the image spanned by the node. With normal
maps, on the other hand, as with texture maps, the shading is
somewhat decoupled from the underlying mesh: the same normals
are used for the original and simplified surface, and the extent of a
color shift is bounded by the texture deviation. To incorporate
lighting effects into our system, therefore, we calculate spatial
frequency using a feature size based on the projected extent of the
texture deviation (for normal map lighting) or the node’s bound-
ing sphere (for per-vertex lighting).

Integrating dynamic lighting also requires us to dynamically
adjust the contrast associated with nodes. The luminance range
associated with a lit node is a function not only of its intrinsic
color, but also of the light vector, view vector, and its shading
normal cone. The shading normal cone, like the silhouette normal
cone, simply bounds the normals associated with a node; the only
difference is that the silhouette cone is constructed from the origi-
nal triangles associated with a node, while the shading cone is
constructed from the normal map or vertex normals spanned by
those triangles.

Our normal mapping algorithm was implemented as a texture
combiner program on an nVidia GeForce3, and is simpler than the
full OpenGL lighting model. The luminance range at a vertex is
given by:

Luminance = Kambient*TexVal + Kdiffuse*TexVal*(N•L) + (N•H)n

where TexVal is the intrinsic surface color read from a texture
map, L is the light vector, H is the halfway vector of the Blinn-
Phong lighting model, and N is from the normal map. The light
source and viewer are assumed to be at infinity in this calculation.
For per-vertex lighting, we calculate luminance using OpenGL’s
light model for an infinite directional light source and viewer. We
could support more complex lighting models (e.g., point sources),
or more than one light, at the cost of some additional computation.

Given the lighting model, we can bound the luminance of the
diffuse contribution by calculating the vector encompassed by the

shading normal cone that is closest in direction to L and the vector
furthest in direction from L. Similarly, we find the range of
specular contribution using the halfway vector. Note that this
computation is similar to that of Klein and Schilling (1999).

5 PREPROCESSING
We build our MTs by progressive edge collapse simplification
with the goal of minimizing object-space texture deviation. We
then run a preprocessing stage that augments an arbitrary MT with
the structures used by our perceptual run-time simplification. The
preprocessing maps nodes in the MT to the triangles in the origi-
nal model to which they correspond in the texture parameteriza-
tion, and calculates texture luminance ranges, bounding spheres,
and normal cones from those triangles.

To facilitate mapping nodes to their corresponding full-
resolution triangles, we build an image pyramid on the original
textures. The bottom level of this pyramid represents the full-
resolution texture, and we store for every texel a list of the trian-
gles that intersect it. From these lists, we can compute a bounding
sphere that contains all triangles that map to that texel, normal
cones that bound the normals of the triangles and vertices or nor-
mal map, and a luminance range Lmin – Lmax for those triangles.
We can propagate this information up the pyramid to represent
bounding spheres, normal cones, and luminance ranges for pro-
gressively larger patches of the original surface.

Once the image pyramid is built, we determine the percep-
tual structures for a given node by hierarchically rasterizing the
triangles of the node into the pyramid, and updating the bounding
sphere, normal cones, and luminance ranges according to the re-
gions those triangles cover in the pyramid. If a region of the
pyramid is completely covered, we can use the bounds stored with
the region directly; if a region partially intersects a triangle, we
recursively test the triangle against the next level of the pyramid.
The hierarchical evaluation makes the precomputation fairly effi-
cient; preprocessing the armadillo model, with over 100 textures
and over 400,000 triangles, takes about 3 minutes. We believe
this could be further accelerated by clever use of the graphics
hardware, but have not felt the need to do so.

A note about calculating luminance: we compute luminance
using the standard RGB Y coefficients for modern CRT moni-
tors in Recommendation 109 (Poynton 1998), gamma corrected
for our display hardware and accounting for the measured ambient
light level in our lab. Clearly much more care and calibration
would be required to guarantee true imperceptible simplification;
however, for our best-effort approach a rough approximation that
captures the shape of the curve seems sufficient.

6 RESULTS AND EVALUATION
The preceding sections and figures demonstrate the visual results
of our approach, and highlight the simplification effects that it
accounts for: silhouette preservation, texture-content sensitive
simplification, and illumination sensitive simplification. Here we
visually and quantitatively compare the quality of the resulting
simplifications to those produced by other algorithms.

As a fair comparison, we decided to contrast our system with
a view-dependent implementation of the appearance-preserving
simplification or APS scheme of Cohen et al (1998). We should
emphasize that this is a rigorous comparison against one of the
higher fidelity simplification algorithms available. APS was the
first simplification algorithm to attempt strong guarantees on the
rendered fidelity of LOD; it focuses on bounding the possible
screen-space distortion caused by simplification. Like our sys-
tem, APS measures parameterized distortion and factors appear-
ance into color (represented by texture maps) and shading (repre-
sented with normal maps). Whereas the original algorithm uses
this bound to choose a static LOD, the view-dependent version

uses our multitriangulation implementation to simplify to a budget
while minimizing projected screen-space error of nodes on the
MT cut. We also compare our system to a view-independent
implementation of APS that simplifies the multitriangulation ac-
cording to object-space texture deviation, as well as a heuristic
approach that uses APS but multiplies the screenspace texture
deviation tenfold for silhouette regions. [Figures 1-3].

We also make a limited comparison to the Luebke-Hallen
approach—limited because a fair comparison is difficult. The
Luebke-Hallen algorithm does not support dynamic lighting, so
we use a prelit model acquired from a Cyberware laser scanner.
Also, the Luebke-Hallen approach does not support textured mod-
els, but it would be grossly unfair to compare a Gouraud-shaded
model with significant reduction in polygon count to a similarly-
reduced texture-mapped model. We therefore extend the Luebke-
Hallen approach to render with and compute contrast from the
texture map. Beyond lighting and texturing, the major differences
between our algorithms are the use of the multitriangulation ver-
sus VDSlib vertex merging, and the use of node bounding sphere
versus texture deviation to estimate feature size and spatial fre-
quency. We decided to implement the Luebke-Hallen algorithm
in our MT framework using node radius rather than texture devia-
tion; as Figure 5 shows, the tighter bound provided by texture
deviation improves the quality of the simplification.

In addition to visual inspection, we also report two quantita-
tive measures of image fidelity: RMS and JND. RMS is simple
root-mean-squared error based on the pairwise difference of pix-
els. RMS is much-criticized as an image fidelity metric, but does
give an intuitive feeling for how much the pixels are changing.
The JND metric represents the just-noticeable-difference count
returned by DCTune, a public-domain software package by Wat-
son (1994) used for optimizing the discrete cosine transform
(DCT) basis functions to design custom JPEG quantization matri-
ces. One feature of DCTune, designed to evaluate quanitization
errors in image compression, takes as input two images and re-
turns a measure of their similarly in JNDs. DCTune uses a per-
ceptual color space and accounts for luminance masking (local
adaptation) as well as contrast masking (facilitation and suppres-
sion of one pattern by another). We include plots of RMS error
and JNDs against triangle budget for different models, textures,
and lighting conditions [Figures 1,2,3,5].

As we expect, using a perceptual model generally provides
improved simplification. The benefit is most pronounced on ver-
tex-lit models, primarily because the distortion and tessellation
artifacts in specular highlights are highly perceptible. Using nor-
mal maps maintains smooth highlights even at low resolutions.
Under these conditions the primary differences between our algo-
rithm and APS are the ability to simplify low-contrast regions
(washed out highlights or dark shadow), and the ability to pre-
serve high-contrast areas such as silhouettes. Except at certain
simplification levels, these effects are less important visually.

7 DISCUSSION AND FUTURE WORK
Just as view-dependent algorithms gain benefits and incur costs
not present in view-independent systems, our perceptual model
provides intelligent simplification not present in other algo-
rithms—aggressive simplification in low-contrast regions, such as
uniform texture areas and washed-out specular highlights, along
with intelligent refinement at specular highlights and silhouette
regions—but comes at a computational cost. Other algorithms
have been augmented with manually weighted heuristics to ac-
count for most of these opportunities, such as Luebke and Erik-
son’s use of tighter error thresholds for silhouettes. One could
argue that evaluating such heuristics probably requires less com-
putation than our perceptual model, and that heuristics could be
developed to account for all the simplification effects we support.

But this would be missing the point: our chief contribution is a
way to avoid ad hoc hand-tuned heuristics—or perhaps, in future
work, to guide their development—by reasoning directly from
principles of visual perception.

Avenues for future work
While our initial system shows promise, many avenues of future
work remain. Perhaps the most important topic for future re-
search is the integration of better perceptual models. We would
like to extend our perceptual model to include important effects
such as local adaptation (TVI effects), chromatic contrast sensitiv-
ity, and temporal effects (flicker sensitivity, sudden onset). In
particular, it would seem fruitful to investigate efficient ways to
model visual masking. The frequency content of textures and
normal maps has a strong effect on the perceptibility of the sim-
plification; we believe a simple model of visual masking, perhaps
based on pre-computed frequency content in the textures, would
often enable much more aggressive simplification. Along these
lines the work on perceptual texture caching by Dumont et al
(2001) appears promising for future investigation. More gener-
ally, a dire need exists for adequate models of suprathreshold
perceptibility that are efficient enough for an interactive frame-
work.

One useful extension would be to account for MIP-map fil-
tering when calculating texture contrast. Many textures have
noise or high-frequency components that introduce a great deal of
contrast to our algorithm, which simply assigns a node a contrast
from the luminance range it covers in the texture. Often these
high-frequency components are filtered out in the first or second
MIP level, leaving a low-contrast texture that could be simplified
much more aggressively. Note that by not accounting for MIP-
mapping we are at least treating the model conservatively, since
MIP-mapping should only reduce contrast and hence perceptibil-
ity.

We would also like to investigate optimizing the MT con-
struction for perceptual simplification. Currently we simply apply
our perceptual metrics to pre-built MTs, which were constructed
with the goal of minimizing texture deviation, but building MTs
tailored for given textures should allow the construction process
more leeway, for example in areas of low contrast. It also seems
helpful to investigate “quick and dirty” parameterizations that
could be used to apply our algorithm to non-textured models. A
great deal of excellent research has been carried out in the realm
of automatic parameterization, but it remains a difficult problem.
However, even a simplistic approach should suffice for our
method, which simply needs to establish a correspondence be-
tween nodes in the MT and the original triangles to which they
relate.

REFERENCES
Bolin, Mark. and G. Meyer. “A Perceptually Based Adaptive Sampling
Algorithm”, Computer Graphics, Vol. 32 (SIGGRAPH 98).
Cohen, J, M. Olano, and D. Manocha. “Appearance-Preserving Simplifi-
cation,” Computer Graphics, Vol. 32 (SIGGRAPH 98).
Daly, Scott, “The Visible Differences Predictor: An Algorithm for the
Assessment of Image Fidelity”, Proceedings of SPIE, Vol. 1616, pp. 2-15.
1992.
DeFloriani, Leila, Paola Magillo, and Enrico Puppo. Building and Trav-
ersing a Surface at Variable Resolution. Proceedings of IEEE Visualiza-
tion '97. pp. 103-110.
DeFloriani, Leila, Paola Magillo, and Enrico Puppo. Efficient Implemen-
tation of Multi-Triangulations. Proceedings of IEEE Visualization '98. pp.
43-50.
Duchaineau, M., M. Wolinsky, et al. (1997). “ROAMing Terrain: Real-
time Optimally Adapting Meshes”. Proceedings of IEEE Visualization 97

Dumont, R., Pellacini, F., & Ferwerda, J. A. (2001). A perceptually-based
texture caching algorithm for hardware-based rendering. Proceedings
Eurographics Workshop on Rendering 2001, Springer (2001).
Erikson, C. and D. Manocha (1999). “GAPS: General and Automatic
Polygonal Simplification”. 1999 ACM Symposium on Interactive 3D
Graphics.
Ferdwada, James, S. Pattanaik, P. Shirley, and D. Greenberg. “A Model
of Visual Masking for Realistic Image Synthesis”, Computer Graphics,
Vol. 30 (SIGGRAPH 96).
Funkhouser, Tom, and C. Sequin. “Adaptive display algorithm for inter-
active frame rates during visualization of complex virtual environments”,
Computer Graphics, Vol. 27 (SIGGRAPH 93).
Garland, Michael and Paul Heckbert. Simplifying Surfaces with Color and
Texture using Quadric Error Metrics. Proceedings of IEEE Visualization
'98. pp. 263-270.
Hoppe, Hughes. “View-Dependent Refinement of Progressive Meshes”,
Computer Graphics, Vol. 31 (SIGGRAPH 97).
Hoppe, Hugues H. New Quadric Metric for Simplifying Meshes with
Appearance Attributes. Proceedings of IEEE Visualization '99. pp. 59-66.
Klein, Reinhard and Andreas Schilling. Efficient rendering of multiresolu-
tion meshes with guaranteed image quality . The Visual Computer . vol.
15 (9). 1999 . pp. 443-452 .
Lee, Aaron, Henry Moreton, and Hugues Hoppe. Displaced Subdivision
Surfaces. Proceedings of SIGGRAPH 2000.
Lindstrom, Peter and Greg Turk. Image-driven Simplification. ACM
Transactions on Graphics. vol. 19(3). 2000. pp. 204-241.
Luebke, David and Benjamin Hallen. Perceptually Driven Simplification
for Interactive Rendering. Proceedings of Eurographics Rendering Work-
shop. 2001.
Luebke, David, and C. Erikson. “View-Dependent Simplification of
Arbitrary Polygonal Environments”, Computer Graphics, Vol. 31 (SIG-
GRAPH 97).
Myszkowski, Karol, Rakehiro Tawara, hirolyuke Akamine, Hans-Peter
Seidel. “Perception-Guided Global Illumination Solution for Animation
Rendering. Proceedings of SIGGRAPH 2001. 221-230.
Poynton, C. “The rehabilitation of gamma”, In Proceedings of Human
Vision and Electronic Imaging III, vol 3299, pp 232-249. SPIE, San Jose,
CA (1998).
Ramasubramanian, Mahesh, S. Pattanaik, and D. Greenberg. “A Percep-
tually Based Physical Error Metric for Realistic Image Synthesis”, Com-
puter Graphics, Vol. 33 (SIGGRAPH 99).
Rossignac/Borrel 93
Reddy, Martin. “Perceptually-Modulated Level of Detail for Virtual
Environments”, Ph.D. thesis, University of Edinburgh, 1997.
Schilling, A., R. Klein. “Rendering of Multiresolution Models with Tex-
ture” Computers & Graphics vol. 22, no. 6, pp. 667-674, Dec. 1998.
Schroeder, W. J., J. A. Zarge, et al. (1992). “Decimation of Triangle
Meshes”, Computer Graphics (SIGGRAPH 92).
Scoggins, R., Machiragju, R., and Moorhead, R. J. “Enabling Level of
Detail Matching for Exterior Scene Synthesis”. In Proceedings of IEEE
Visualization 2000.
Xia, Julie and Amitabh Varshney. “Dynamic View-Dependent Simplifi-
cation for Polygonal Models”, Visualization 96.

0

10

20

30

40

50

60

70

80

90

100

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Number of Triangles

Pe
rc

ep
tib

ili
ty

 (J
N

D
)

View Independent

APS

Percpetual Metric

APS w ith Silhouettes

Figure 1: Comparison of different algorithms on the vertex-lit torus model (top), reported in Just Noticeable
Differences using the DCTune software package (middle) and RMS pixel difference in luminance (bottom).
The ability of the perceptual metric to predict high perceptible artifacts in regions of specular highlights,
and allocate more triangles to those regions, gives it an advantage over other algorithms here.

Vertex Lit Torus w ith Puzzle Texture

0

1

2

3

4

5

6

7

8

9

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Number of Triangles

Pe
rc

ep
tib

ili
ty

 (R
M

S)

View Independent

APS

Perceptual Metric

APS w ith Silhouettes

Normal Mapped Red Armadillo

0

1

2

3

4

5

6

7

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

Number of Triangles

Pe
rc

ep
tib

ili
ty

 (R
M

S)

View Independent

APS

Perceptual Metric

APS w ith Silhouettes

Figure 2: Comparison of different algorithms on the normal-mapped armadillo model (inset), reported in
Just Noticeable Differences using the DCTune software package (top) and RMS pixel difference in lumi-
nance (bottom). As expected, with normal mapping enabled the benefits of perceptual simplification are
comparatively slight.

Normal Mapped Red Armadillo

0

5

10

15

20

25

30

35

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

Number of Triangles

Pe
rc

ep
tib

ili
ty

 (J
N

D
)

View Independent

APS

Perceptual Metric

APS w ith Silhouettes

Vertex Lit Red Armadillo

0

20

40

60

80

100

120

140

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

Number of Triangles

Pe
rc

ep
tib

ili
ty

 (J
N

D
)

View Independent

APS

Perceptual Metric

APS w ith Silhouettes

Vertex Lit Red Armadillo

0

2

4

6

8

10

12

14

16

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

Number of Triangles

Pe
rc

ep
tib

ili
ty

 (R
M

S)

View Independent

APS

Perceptual Metric

APS w ith Silhouettes

Figure 3: Comparison of different algorithms on the vertex-lit armadillo model (inset), reported in Just No-
ticeable Differences using the DCTune software package (top) and RMS pixel difference in luminance (bot-
tom). The ability of the perceptual metric to predict high perceptible artifacts in regions of specular high-
lights, and allocate more triangles to those regions, gives it an advantage over other algorithms here.

Figure 4: Contrast calculation and simplification effects. The original model shown at full resolution (a) with 57660 triangles and sim-
plified (b) by 50%. The close-up (c) illustrates preservation of silhouettes and extra simplification in low-contrast areas such as
washed-out specular highlights and deeply shadowed regions. Image (d) shows the contrast due only to dynamic lighting; (e) shows
the contrast due solely to the texture; (f) shows the combined contrast used to generate the simplifications shown in (b) and (c).

(a) (b) (c)

(f)(e)(d)

Figure 5: Comparison of Luebke-Hallen approach (driven by node radius) and our perceptual simplification
approach (driven by texture deviation) on a pre-lit textured model (a laser scan of a human face, inset). Note
that the holes (in the left pupil and beard) are artifacts of the data and not our simplification algorithm).

Texture Mapped Face

0

10

20

30

40

50

60

70

80

90

0 50000 100000 150000 200000 250000 300000 350000 400000

Number of Triangles

Pe
rc

ep
tib

ili
ty

 (J
N

D
)

Node Size Driven

Texture Deviation Driven

0

0.5

1

1.5

2

2.5

3

3.5

0 50000 100000 150000 200000 250000 300000 350000 400000

Number of Triangles

Pe
rc

ep
tib

ili
ty

 (R
M

S) Node Size Driven

Texture Deviation Driven

