
 

1 

Perceptually Driven Interactive Rendering 
David Luebke and Benjamin Hallen 

University of Virginia Tech Report #CS-2001-01 

 
Abstract 
We present a framework for accelerating interactive rendering, 
grounded in psychophysical models of visual perception.  This 
framework is applicable to rendering techniques that regulate 
resolution—and hence rendering load—using a hierarchy of local 
simplification operations.  Our method drives those local 
operations directly by perceptual metrics: the effect of each 
simplification on the final image is considered in terms of the 
contrast the operation will induce in the image and the spatial 
frequency of the resulting change.  A simple and conservative 
perceptual model determines under what conditions the 
simplification operation will be perceptible, enabling imperceptible 
simplification in which operations are performed only when judged 
imperceptible.  Alternatively, simplifications may be ordered 
according to their perceptibility, providing a principled approach to 
best-effort rendering.  Our approach addresses many interesting 
topics in the acceleration of interactive rendering, including 
imperceptible simplification, silhouette preservation, and gaze-
directed rendering.  We demonstrate our framework applied to two 
quite different multiresolution rendering paradigms: view-
dependent polygonal simplification and the QSplat point-based 
rendering system of Rusinkiewicz and Levoy [26].   

1 Introduction 
Interactive rendering of large-scale geometric datasets continues to 
present a challenge for the field of computer graphics.  Such 
interactive visualization is an enabling technology for many far-
flung fields, ranging from scientific and medical visualization to 
entertainment, architecture, military training, and industrial design.  
Despite tremendous strides in computer graphics hardware, the 
growth of large-scale models continues to outstrip our capability to 
render them interactively.  A great deal of research has therefore 
focused on algorithmic techniques for managing the rendering 
complexity of these models.  Level of detail management offers a 
powerful tool for this task.  Level of detail or LOD methods hinge 
on the observation that most of the complexity in a detailed 3-D 
model is unnecessary when rendering that model from a given 
viewpoint.  These methods simplify small, distant, or otherwise 
unimportant portions of the scene, reducing the rendering cost 
while attempting to retain visual fidelity.   

Visual fidelity, however, has traditionally been difficult to 
quantify, so most LOD algorithms settle for geometric measures of 
quality.  For example, the most common use of LOD management 
is polygonal simplification, in which a 3-D polygonal model is 
replaced with a simpler model using fewer polygons.  Here 
geometric fidelity of the simplified surface may be measured with 
the distance of that surface from the original mesh, or with the 
volume of distortion created by the simplification.  Such metrics 
are useful for certain CAD applications, such as finite element 
analysis, and for certain medical and scientific visualization tasks, 
such as co-registering surfaces or measuring volumes.  Probably 
the most common purpose of simplification, however, is to 
accelerate interactive rendering.  For this purpose, the most 

important measure of fidelity is not geometric, but perceptual: 
does the simplification look like the original? 

In this paper, we describe a framework for LOD management 
guided directly by perceptual metrics.  These metrics derive from 
the contrast sensitivity function or CSF, a measure of the 
perceptibility of visual stimuli.  Testing local simplification 
operations against a model of the CSF provides a principled 
approach to the tradeoff between fidelity and performance.  This 
approach addresses several interesting problems in regulating 
level of detail: 

• Imperceptible simplification: We evaluate simplification 
operations by the “worst-case” contrast and spatial 
frequency they induce in the image, and apply only those 
operations judged imperceptible.  We hypothesize that the 
resulting simplified model is indistinguishable from the 
original, and test that hypothesis in this paper. 

• Best-effort simplification: Often we wish to render the best 
image possible within time or polygon constraints.  Ordering 
simplification operations according to the viewing distance 
at which their effect on the image becomes perceptible 
furnishes a framework for simplifying to a budget. 

• Silhouette preservation: Silhouettes have long been 
recognized as visually important, but how important?  Our 
model quantifies silhouette importance by accounting for 
their increased contrast, and preserves them accordingly. 

• Gaze-directed rendering: If the system can monitor the 
user’s gaze, the image may be simplified more aggressively 
in the periphery than at the center of vision.  We can extend 
our model to incorporate eccentricity, or the falloff of visual 
acuity in the periphery. 

Our framework applies to any rendering system based on 
hierarchical simplifications or approximations.  Many interactive 
rendering acceleration schemes fall into this category, including 

Figure 1: Perceptually driven QSplat.  Splats drawn in blue
have been simplified.  Left: QSplat’s highest quality rendering
mode traverses until each splat is less than a pixel in size.
Right: perceptually driven rendering traverses nodes only
where dictated by the local contrast and spatial frequency.
Our model can also account for gaze direction: here, the
user’s gaze rests on Lucy’s torch. 



 

2 

the use of polygonal simplification, texture-based imposters, and 
some forms of image- and point-based rendering.  We have applied 
perceptually driven interactive rendering to two such schemes: 
view-dependent polygonal simplification and the point-based 
renderer QSplat. 

Below we briefly present some background on visual perception, 
followed by an overview of our framework.  We illustrate this 
overview using QSplat, which was relatively straightforward to 
dovetail with perceptually driven rendering.  We then turn to the 
application of our framework to polygonal simplification, which 
was more involved.  We describe the underlying algorithm and the 
evaluation of contrast and spatial frequency induced by 
simplification, which is ultimately the heart of the problem.  
Finally, we consider our framework in relation to previous work on 
perceptually guided rendering, and close with some thoughts on 
future extensions and improvements.  

2 The Contrast Sensitivity Function 
A large body of perceptual psychology literature focuses on the 
perceptibility of visual stimuli.  The simplest relation established in 
this literature is Weber’s law, which predicts the minimum 
detectable difference in luminance between a test spot on a 
uniform visual field.  Weber’s law states that at daylight levels the 
threshold difference in luminance increases linearly with 
background luminance.  Interesting scenes are not uniform, 
however, but contain complex frequency content.  Outside a small 
frequency range, the threshold sensitivity predicted by Weber’s 
law drops off significantly.  Many perception studies have 
therefore examined the perceptibility of contrast gratings, 
sinusoidal patterns that alternate between two extreme luminance 
values Lmax and Lmin.  Campbell first characterized the 
perceptibility of a contrast grating in terms of its contrast and 
spatial frequency [4].  Contrast grating studies use Michaelson 
contrast, defined as (Lmax – Lmin) / (Lmax + Lmin), and spatial 
frequency, defined as the number of cycles per degree of visual 
arc.  The threshold contrast at a given spatial frequency is the 
minimum contrast which can be perceived in a grating of that 
frequency, and contrast sensitivity is defined as the reciprocal of 
threshold contrast.  The contrast sensitivity function (CSF) plots 
contrast sensitivity against spatial frequency, and so describes the 
range of perceptible contrast gratings [Figure 2a].  

Of course, most interesting images are more complex than the 
simple sinusoidal patterns used in contrast gratings.  Campbell 
found that the perceptibility of complex signals could be 
determined by decomposing a signal into sinusoidal components 
using Fourier analysis [5].  In particular, if no frequency 

component of a signal is perceptible, the signal will not be 
perceptible.   

Note that the CSF predicts the maximum perceptibility of a 
stationary grating at the center of view; many other factors can 
lower contrast sensitivity.  Among these is eccentricity, or 
distance from the direction of gaze.  The fovea is the region of 
highest sensitivity on the retina, occupying the central 1º or so of 
vision.  Visual acuity, measured as the highest perceptible spatial 
frequency, is significantly lower in the visual periphery than at 
the fovea.  The relationship between visual acuity and 
eccentricity, defined as angular distance from the fovea, was first 
characterized in humans by Rovamo and Virsu [25].  By 
extending our perceptual model to incorporate eccentricity, we 
can predict the visibility of peripheral features for use in gaze-
directed rendering. 

3 Overview  
Our goal is to analyze LOD-based rendering algorithms within a 
principled perceptual framework inspired by the contrast grating 
studies described above.  We map the change resulting from a 
local simplification operation to a worst-case contrast grating, 
meaning a grating with the most perceptible combination of 
contrast and frequency possibly induced by the operation.  We 
apply the simplification only if we would not expect a grating 
with that contrast and frequency to be visible.  Our hypothesis: if 
we can isolate the most perceptible frequency component 
possibly induced by a simplification operation, and determine that 
a contrast grating at that frequency would not be visible, we can 
perform the operation without perceptible effect. 

3.1 Determining the Worst Case  
To determine the worst-case frequency and contrast efficiently, 
we make some conservative simplifying assumptions.   First, we 
observe that the peak contrast sensitivity occurs at approximately 
2-4 cycles per degree, and that most local simplification 
operations on a complex model affect only much higher 
frequencies.  We therefore assume that contrast at lower spatial 
frequencies is more perceptible than at higher frequencies 
(Section 6.1 describes how we adjust our perceptual model to 
ensure this assumption holds).  The minimum frequency 
component of a region in the image spanning n degrees of the 
user’s angular field of view is one cycle per 2n degrees.  Put 
another way, the maximum wavelength needed to represent a 
region of the image is twice the maximum spatial extent of that 
region [Figure 3].  Consequently, finding the worst-case 
frequency induced by a simplification reduces to finding the 
screen-space extent of the affected region. 

For the worst-case contrast, we determine a bound on the 
maximum change in luminance among all the pixels affected by 
the simplification.  Put another way, the worst-case contrast of a 

Figure 2: (a) The contrast sensitivity function measures the
perceptibility of visual stimuli (sinusoidal gratings) in terms
of their contrast and spatial frequency (cycles per degree).
(b) The shape of the CSF is attributed to the aggregate
response of multiple bandpass mechanisms in the visual
system. Courtesy Martin Reddy, Mahesh Ramasubramanian. 

Figure 3: We use a conservative approximation of the
change in intensity (error) induced by folding a node.  Here
the black line represents the original surface and the blue
line the simplified surface.   



 

3 

simplification operation is the maximum contrast between an 
image of the affected region at full resolution and an image of the 
region simplified.  For 3-D models, there are two basic cases: 

• The entire affected region lies interior to a surface that 
entirely faces the viewer.  This is the simplest case: the 
contrast between the original region and the folded region is 
completely determined by the luminance of the local surface 
before and after the fold. 

• The affected region includes a silhouette edge.  This expands 
the possible contrast incurred by the simplification to include 
the portion of the scene behind the affected region, since 
simplifying the surface may expose a very bright or very dark 
feature occluded before simplification.  

Consequently, silhouette regions of the object are simplified less 
aggressively—exactly the behavior we should expect in a 
perceptually driven simplification algorithm.  Note, however, that 
even at these high contrast levels silhouette regions can still be 
simplified if they represent very fine details (high spatial 
frequencies) or are in the viewer’s peripheral vision (high 
eccentricity). 

3.2 An Empirical Perceptual Model 
Many researchers have characterized the contrast sensitivity 
function.  In early work, Kelly derived an abstract relationship for 
the perceptibility of sinusoidal gratings over a narrow range: 
CT = α2e-α [14].  Here CT represents the threshold contrast and α 
represents spatial frequency.  The more accurate CSF curve given 
by Barten [2] is used in recent advanced global illumination 
algorithms, such as the physically based metric of 
Ramasubramanian, which also account for adaptation effects due 
to background illumination [23][3].  Modern perceptual theory 
attributes the shape of the CSF to the combined response curves of 
multiple bandpass mechanisms in the visual system, each 
processing only a small range of the visible spatial frequency 
spectrum [Figure 2b].  This multiscale visual processing can be 
emulated with a Laplacian pyramid for spatial decomposition [17].  
Current perceptual rendering techniques also account for contrast 
masking, which represents the visual system’s decreased contrast 
sensitivity in the presence of strong patterns.  This can further 
increase the allowable error in an image [9][23][3]. 

Unfortunately, these sophisticated perceptual models, which 
employ the latest advances in understanding perception, are far too 
costly for the interactive framework we propose.  In our 
framework, thousands of simplification operations must be 
considered every second, leaving less than a millisecond to 
evaluate the induced contrast and frequency.  Clearly, we must 
forego the state-of-the-art perceptual models used in current global 
illumination work for a model that is simple, fast, and 
conservative.  

To achieve simplicity and speed while still accounting for real-
world factors that affect perception, such as ambient light, we 
chose to take an empirical approach.  Recall our hypothesis: a 
simplification operation, mapped to a “worst-case” contrast 
grating, can be performed imperceptibly if that grating would not 
be perceptible.  We build our perceptual model directly from 
contrast grating tests performed under the same conditions—
room illumination, monitor, etc—under which our final system 
will run.  A calibration procedure, detailed below, tests the ability 
of a user to detect contrast gratings, recording threshold contrast 
over a wide range of spatial frequency and eccentricity.  We then 
build a lookup table from the resulting CSF curves and use linear 
interpolation at runtime to determine whether the user can 
perceive a given contrast at a given spatial frequency and 
eccentricity.   

This model could certainly be improved, but we chose to focus on 
developing a framework for driving interactive rendering with a 
perceptual model, rather than on developing the model itself.  Our 
empirical model is simple to implement and works well in 
practice; Figure 6 shows example CSF curves determined from a 
typical calibration procedure. 

θ N

Figure 5: The lowest spatial frequency that can be affected
by a node spanning θº of visual arc has one cycle per 2θº. 

Figure 4: Estimating contrast in QSplat.  Here the small
circles represent leaf nodes (samples) with their bounding
spheres.  The sphere of an internal node N (drawn in red)
must contain the spheres of all its descendents (also in red).
To compute contrast induced by simplifying N, we must also
account for nodes intersecting N (drawn in blue), since these
nodes may be occluded by N’s splat. 

Spatial Frequency vs. Threshold Contrast

0

0.1

0.2
0.3

0.4

0.5

0.6

0.7
0.8

0.9

1

0 5 10 15 20 25

Spatial Frequency

C
on

tr
as

t

0 deg. eccentricty 9 deg. ecc. 18 deg. ecc. 26 deg. ecc.

Figure 6: We use a simple model of contrast sensitivity based
on an empirical calibration procedure.  Shown here are results
from one user’s calibration. 



 

4 

4 Perceptually Driven Point Rendering 
The QSplat point-rendering system lends itself nicely to our 
perceptual rendering framework.  While Rusinkiewicz and Levoy 
describe many careful optimizations, tradeoffs, and design 
decisions that make QSplat exceptionally fast [26], at its heart it is 
a simple algorithm.  Qsplat uses a hierarchy of bounding spheres 
for culling, rendering, and level of detail management.  The leaf 
nodes in this hierarchy of spheres form a dense tiling of the 
original surface and typically represent samples from a 3-D 
scanning device.  Internal nodes completely contain the spheres of 
their descendents, and average the color and normal of their 
descendents.  The hierarchy is traversed in a view-dependent 
fashion: backfacing and invisible nodes are skipped and their 
descendents not traversed, while nodes below a certain size on 
screen are drawn (using a splat) without descending further.  The 
core simplification operation in QSplat, then, is to draw a node 
splat rather than traverse its descendents. 

4.1 Applying the Framework 
To apply perceptually guided rendering to QSplat, we must 
evaluate the spatial frequency and contrast induced by a 
simplification.  Since the sphere at each node completely contains 
all its descendents, we can bound the affected region of the image 
by the projected screen-space extent of the sphere.  Since QSplat 
already computes this diameter, we need only convert it into the 
appropriate spatial frequency.   

Determining Maximal Contrast 

Given a worst-case spatial frequency for the change induced by 
folding a node, we next need to compute the worst-case contrast of 
that change.  Recall that Michaelson contrast depends on Lmax and 
Lmin, the maximum and minimum brightness of the region affected 
by the fold operation.  Brightness, or luminance, is measured in 
cd/m2, so we must convert OpenGL vertex colors to actual 
luminance. 

Simplifying a node N draws its splat rather than the splats of its 

descendents, but may also occlude nodes that do not descend 
from N.  Though it is difficult to determine which nodes may be 
occluded in certain pathological cases, in practice we can account 
for occlusion by considering all nodes intersecting the bounding 
sphere of N [Figure 4].  The maximum contrast that can be 
caused by folding N is then determined by the color of N and the 
range of colors of nodes intersecting N.  We then calculate the 
induced Michaelson contrast by converting all colors to 
luminance, and comparing the minimum and maximum 
luminance of the original surface to the luminance of the 
simplified node.  We can efficiently compute this information 
during preprocessing, quantize contrast to 8 bits, and store it with 
the node.   

Of course, this precomputed contrast becomes invalid if the node 
lies on the silhouette.  QSplat stores a normal and normal cone 
[28] with each node, and evaluates whether the node represents a 
surface region that faces entirely away from the viewer (for 
backface culling) or entirely towards the viewer (to disable 
backface culling).  We can thus identify silhouette nodes with no 
additional computation, since all nodes that are neither entirely 
backfacing nor entirely frontfacing might lie on the silhouette.  
As with contrast, we need to modify the preprocessing to account 
for contained nodes when computing normal cones.  For 
simplicity, and to avoid extra storage, we assume that simplifying 
any silhouette node could induce the maximum possible contrast. 

Putting It All Together 

Given the worst-case contrast and spatial frequency, both readily 
available at run-time, our perceptually driven algorithm for 
QSplat rendering is nearly as simple as the original:  

TraverseHierarchy(node)
{

if (node outside view frustum)
skip this branch

if (node is backfacing)
skip this branch

 // Worst-case frequency has period twice sphere diameter: 
frequency = 1/(4*node->radius);
if (node is frontfacing)

contrast = node->contrast;
else

// Node is on silhouette, use maximum possible contrast
contrast = maxContrast;

if (IsPerceptible(frequency, contrast)
// Simplifying node would be perceptible, keep going 
foreach child of node

TraverseHierarchy(child);
else

// Can simplify node imperceptibly  
DrawSplat(node);

}

Here spatial frequency is represented in cycles per radian.  The 
function IsPerceptible() looks up the given contrast and 
frequency and returns TRUE if simplifying the node to a single 
splat might be perceptible.  In practice, we store the lookup table 
in units of wavelength rather than frequency to avoid the extra 
divide.  If gaze-directed rendering is desired, the traversal 
function calculates angular distance from the gaze point to the 
node, and passes this value to IsPerceptible() as eccentricity. 

Figures 1 and 7 demonstrate our perceptually driven QSplat 
system.    

Figure 7:  Gaze-directed rendering.  Left: At high quality QSplat
uses 2.9 million points to render Lucy.  Right: With the user’s
gaze 29o away, our system imperceptibly simplifies the model to
0.8 million points.  Inset: at this distance all nodes are simplified.
Originally rendered at 1600x1200 on a 23” monitor. 



 

5 

5 Perceptually Driven Polygonal 
Simplification 

Regulating scene complexity and rendering time by simplifying 
small or distant objects was first proposed in Clark’s seminal 1976 
paper [6].  The basic approach described there remains the most 
common approach today: create several versions of each object at 
progressively coarser levels of detail in a preprocess, and choose at 
run-time which version (called LODs) will represent the object.  
The past decade has seen a flurry of research into polygonal 
simplification: algorithms for generating coarse LODs from full-
resolution polygonal models and for managing which LODs 
replace each object.  Several recent surveys examine the field of 
polygonal simplification [11][22][19]; in Section 7 we examine 
some algorithms relevant to perceptually based rendering. 

One difficulty with traditional LOD-based approaches is their 
reliance on a few discrete levels of detail to represent each object.  
This limits the degree to which perceptual metrics can be applied, 
since the entire object must be simplified uniformly.  For example, 
silhouette details tend to be more perceptible than interior details 
because of higher contrast, so the entire object must be treated as if 
it were on the silhouette. Similarly, if the user’s eye rests on any 
portion of the object, a system that accounts for eccentricity must 
treat the entire object as if it were under direct scrutiny.  The 
worst-case assumptions of per-object LOD can severely handicap 
perceptually guided polygonal simplification. 

5.1 View-Dependent Simplification 
View-dependent simplification methods offer a solution.  Rather 
than calculating a series of static levels of detail in a preprocess, 
view-dependent systems build a dynamic data structure from 
which a desired level of detail may be extracted at run time.  
Objects in a view-dependent algorithm may span multiple 
resolutions, solving the worst-case behavior of traditional LOD.  
For example, portions of the object under the viewer’s gaze can be 
represented at higher fidelity than portions in the peripheral vision, 
and regions of the object moving slowly across the visual field 
could utilize higher resolution than fast-moving regions. 

Several researchers have independently proposed view-dependent 
algorithms, including Hoppe, Luebke, and Xia [12][18][29].  These 
algorithms share a common feature: each is a hierarchy of vertex 
merge operations that can be applied or reversed at run-time.  Our 
chief contribution is a method for evaluating the perceptibility of a 
vertex merge operation, using factors such as contrast, spatial 
frequency, and eccentricity.  We have implemented our system 
using VDSlib, a public-domain library based on the view-
dependent simplification framework of Luebke [20].  VDSlib 
allows users to plug in custom callbacks for building, culling, 
simplifying, and rendering the vertex tree.  We first augment the 
nodes of a VDSlib vertex tree with data specific to our perceptual 
simplification process, such as the contrast induced by a fold 
operation and the normal mask used for silhouette detection.  Then 
at run time, our callback examines nodes, using contrast, spatial 
frequency, and possibly eccentricity to decide whether VDSlib 
should fold the node.  Before describing the details of this process, 
we briefly review the VDSlib algorithm and notation. 

The main data structure of VDSlib is the vertex tree, a hierarchical 
clustering of vertices.  Vertices from the original model are 
grouped with nearby vertices into clusters, then the clusters are 
clustered together, and so on.  Leaf nodes of the tree represent a 

single vertex from the original model; interior nodes represent 
multiple vertices clustered together, and the root node represents 
all vertices from the entire model, merged into a single cluster. In 
VDSlib parlance, a node N supports a vertex V if the leaf node 
associated with V descends from N.  Similarly, N supports a 
triangle T if it supports one or more of the corner vertices of T.  
The set of triangles in the model supported by a node is called the 
region of support of the node. 

Each node stores a representative vertex called the proxy.  For 
leaf nodes, the proxy is exactly the vertex of the original model 
that the node represents; for interior nodes, the proxy is typically 
some average of the represented vertices.  Folding a node merges 
all of the vertices supported by that node into the node’s single 
proxy vertex.  In the process, triangles whose vertices have been 
merged together are removed from the scene, decreasing the 
overall polygon count.  Since folding a node is the core 
simplification operation of VDSlib, to apply our perceptual 
framework we must evaluate the contrast and spatial extent of the 
change in the rendered image induced by a fold. 

5.2 Applying the Framework: VDSlib 
The effect of folding a node in VDSlib is more complex than the 
effect of drawing a splat in QSplat.  As the vertices and triangles 
supported by the node merge and shift, features in the image may 
shrink, stretch, or disappear completely.  Shifting triangles on the 
visual silhouette may expose previously occluded features.  To 
analyze the effect of folding a node, we should consider all of 
these changes.  One possibility, recently demonstrated by 
Lindstrom and Turk for static LOD generation, is to render the 
scene before and after the operation and analyze the resulting 
images [16].  At present, however, the requisite rendering and 
image processing appears too expensive for dynamic 
simplification.  Instead, we want a conservative worst-case bound 
on the changes in the image caused by folding the node.  Since 
our goal is to evaluate a hypothetical change at least as 
perceptible as any changes that folding actually incurs, we 
consider the removal of a feature with worst-case size and 
contrast. 

Spatial Frequency: Estimating Extent 

Again, the minimum frequency induced by a simplification is 
determined by the spatial extent of the resulting change in the 
image.  Notice that features in the image affected by a fold 
consist of triangles connecting vertices involved in the fold.  The 
largest feature that can be removed or exposed by geometric 
distortion upon folding a node is therefore constrained by the 
distance vertices move during the fold.  Thus, the problem of 
computing the minimum frequency induced by folding a node 
reduces to computing the screen-space extent of all vertices 
supported by the node.1  As with QSplat, we use bounding 
spheres to estimate this extent, associating with each node a tight-
fitting sphere that contains all vertices in the node’s region of 
support.  The angular extent of these bounding spheres, as seen 
from a given viewpoint, can be calculated very quickly.  The 
minimum frequency affected by folding a node is then one cycle 

                                                                 
1 Technically, this holds when the model is flat shaded; for 
Gouraud-shaded models, adjacent vertices should also be 
included.  However, we have not found this necessary in practice. 



 

6 

per two degrees of angular extent spanned by the node’s bounding 
sphere [Figure 4]. 

Contrast: Estimating Intensity Change  

Determining the exact contrast induced by folding a node would be 
as expensive as rendering the unfolded geometry.  Instead, we 
obtain a conservative lower bound by comparing the intensities of 
all the vertices the node supports in the original model with the 
intensities of the vertices in the simplified surface [Figure 3].  The 
greatest difference between the intensities of the surface vertices 
before folding and after folding bounds the maximum contrast 
between the simplified surface and the original surface, since in a 
Gouraud-shaded model extremes of intensity always occur at the 
vertices.  This conservative test may overestimate the contrast 
induced by folding, but will not underestimate it.   

When the node’s region of support includes a silhouette, we must 
be even more conservative.  Lacking knowledge about what lies 
behind the model, we must assume the worst: moving a silhouette 
edge might expose the darkest or brightest object in the scene, 
including the background.  Hence we must compare the range of 
vertex intensities of the node’s region of support against the 
brightest and darkest intensities in the scene, and use the maximum 
possible difference in intensity for calculating the contrast induced 
by the fold.   

Determining Silhouette Nodes 

Since nodes affecting silhouette edges must be treated differently, 
we require an efficient method for identifying such nodes.  For a 
given view, we define silhouette nodes as those nodes supporting 
both front-facing and back-facing triangles in the original mesh.  
We initially employed Shirman’s cone of normals approach [28], 
used by both Luebke and Hoppe [18][12], to determine silhouette 
nodes.  Unfortunately, the cone of normals sometimes proves 
overly conservative, especially in models with sharp edges; we 
found that too many interior polygons were being classified as 
belonging to silhouette nodes.  Instead, we used a bitwise approach 
inspired by the rapid backface culling technique of Zhang and Hoff 
[30].  We map the Gauss sphere of normal space to a normal cube 
whose faces are tiled into cells, in effect quantizing the space of 
normals.  Each node in the model stores a normal mask, a bit 
vector representing the normals of all its supported triangles.  A bit 

in the mask is set if a triangle normal falls within the 
corresponding cell of the normal cube.   

The accuracy of the normal mask is bounded only by the number 
of cells, which depends on the length of the bit vector.  This 
improves significantly over the cone of normals, which can 
greatly overestimate the range of normals.  Normal masks are 
efficient to compute, since they can be propagated up the vertex 
tree using bitwise-OR operations.  Testing whether the node 
might lie on the silhouette can also be made very efficient by 
precomputing two bitmasks, representing the space of normals 
that might be backfacing and frontfacing, respectively. A node 
may be on the silhouette if its normal mask overlaps with both the 
frontfacing and the backfacing bitmasks.  The test to classify a 
silhouette node therefore reduces to two bitwise-AND operations, 
whose cost depends on the length of the bit vector.  We chose 48 
bytes (64 bits per face of the normal cube) for accuracy, but if 
memory is at a premium, fewer bits could be used to trade off 
accuracy for compactness. 

5.3 Perceptually Guided Best-Effort Rendering 
Imperceptible simplification makes a guarantee about the visual 
fidelity of the simplified scene.  Often, however, a guarantee 
about the complexity, and thus rendering time, is desired instead.  
VDSlib supports triangle budget simplification, which allows the 
user to specify how many triangles the scene should contain.  
Using a user-specified run-time error metric, VDSlib then 
minimizes the total error induced by all folded nodes within this 
triangle budget constraint.  Internally, VDSlib performs triangle 
budget simplification using a greedy approach. A priority queue 
of boundary nodes is sorted by induced error, as evaluated by a 
user-supplied callback.  The node N with the greatest error is 
unfolded, adding some triangles to the scene.  N is then removed 
from the priority queue and its children inserted back into the 
queue.  This process iterates until unfolding the top node of the 
queue would exceed the triangle budget. 2  

For principled best-effort rendering, then, we must generate a 
sound perceptual measure of the error introduced by folding a 
node. The key is to recast our metric for evaluating the 
                                                                 
2 Note that this assumes error decreases monotonically; folding a 
node should not induce more error than folding its parent. 

Figure 8: The original Stanford Bunny model (69,451 faces) and a simplification by our perceptually driven system (29,866 faces).
In this view the user’s gaze is 29o from the center of the bunny…equivalent to looking at the page number on this page from a
distance of 10”.  Note that the silhouette is well preserved, along with strong interior details (the line of the haunch, the shape of the
eye, etc.) while subtle bumps on the surface are simplified. 



 

7 

perceptibility of fold operations.  Rather than a binary 
perceptible/not perceptible decision, we need a scalar to express 
how perceptible a fold operation could be.  We chose to cast the 
question in terms of distance: how far would the viewer have to be 
from the screen before the node could be folded imperceptibly? 
The answer can be computed from our current perceptual model, in 
effect by inverting our lookup tables.  Rather than computing the 
spatial frequency of a node and looking up the threshold contrast at 
which folding is perceptible, we use the precomputed contrast 
induced by folding and look up the threshold spatial frequency.  
From this we can compute the distance at which folding the node 
would be perceptible, and sort nodes in the priority queue by this 
distance. 

To recap, we order folds based on the viewing distance at which 
they become perceptible.  This provides a convenient framework 
for best-effort triangle budget simplification, and an intuitive 
physical measure of the fidelity achieved: after simplifying to the 
user-specified number of triangles, the system can report the 
distance at which that simplification should be imperceptible. 

5.4 Results 
All results given are on an 866 MHz Pentium III computer with 
NVidia GeForce2 graphics.  Figures 8 and 9 show models 
simplified with our perceptually driven algorithm.  Since we are 
guaranteeing imperceptible simplification, the reductions in 
polygon count may seem modest.  However, these results and the 
user study below clearly show that perceptually driven 
simplification can reduce model complexity without visual effect.     

Perceptually driven best-effort rendering may be of more use to 
many 3-D applications.  Figure 9 compares our results to VDSlib’s 
built-in triangle budget rendering, which orders fold operations 
only by size of the node.  Note that the perceptually driven 
algorithm preserves more triangles near silhouettes, and simplifies 
more aggressively in regions of low contrast. 

6 Implementation and Evaluation 

6.1 Calibration: Building a Perceptual Model 
The goal of our calibration step is to build a simple empirical 
model of threshold contrast across different values of spatial 
frequency and eccentricity.  Building this model at runtime allows 
us to account for factors that affect perception but are not likely to 
vary over the course of a viewing session, such as room 
illumination and visual acuity of the individual user.  During the 
calibration, the user fixates on a target while a grating fades in, 
slowly increasing in contrast.  The user is instructed to press the 
mouse button when something becomes visible.  To verify that 
the user actually saw the grating, he then clicks on it (without 
looking away from the target).  By varying the spatial frequency 
and eccentricity of the gratings presented to the user, we find the 
threshold contrast across these parameters [Figure 6].  From the 
data sampled during calibration we build the threshold contrast 
lookup table used at runtime. 

Recall that our perceptual model assumes low frequencies are 
more perceptible than high frequencies, so that we can use node 
spatial extent to determine a worst-case contrast.  This 
assumption holds true for most simplification operations we are 
concerned with, which extend a few pixels at most.  To ensure 
that we make a conservative choice, we modify our lookup table 
to effectively clamp the threshold contrast below the most 
sensitive frequencies. 

We must also calibrate the monitor, in order to translate 24-bit 
OpenGL color values into luminance values (cd/m2) used by our 
definition of contrast.  This step involves measuring with a 
photometer the light levels produced by different red, green, and 
blue OpenGL intensities, and building a lookup table from the 
results.  Fortunately, this part of the calibration need be repeated 
only as often as monitor drift warrants. If full precision were not 
necessary, simple gamma correction would suffice.   

Figure 9: Perceptually driven best-effort simplification.  Both images show the horse model (originally 96,966 faces) reduced to
18,000 faces using triangle budget rendering in VDSlib.  Left, the default VDSlib error metric uses screenspace node size, leading to
unnecessarily even tesselation.  Right, our perceptually driven metric uses fewer polygons in interior and low-contrast regions. 



 

8 

6.2 User Study: Evaluating Imperceptibility  
We performed a user study to evaluate our system more formally, 
determining whether our algorithm can indeed produce a 
simplification imperceptible from the original model.  The study 
tested whether subjects could perceive the difference between a 
rendering of a full-resolution model and a rendering of a model 
simplified with our algorithm.  If our hypothesis holds, a subject’s 
ability to discern the simplification will be no better than chance.   

As a control, we also evaluated the ability of subjects to discern 
simplifications that our model predicts could be visible.  To this 
end, we randomly interspersed trials in which the “imperceptible” 
simplification was calculated for an incorrect field of view.  Since 
the field of view varies with the distance δ of the user to the 
monitor, this amounts to calculating simplifications for incorrect 
viewing distances.  For example, a simplification that assumes the 
user is ten times further from the screen than in reality will 
probably be visibily different than a simplification computed for 
the correct distance.  The viewing distance δ in these trials was 
chosen so that simplifications should range from imperceptible 
(δ = correct distance to screen) to clearly perceptible. 

The study consisted of 4 subjects, each of whom performed 200 
trials.  During each trial, the subjects fixated on a target (a short 
line segment) in the center of the screen.  They were then shown 
the same 3-D object twice in succession, identical in all parameters 
except resolution.  25% of the trials displayed the object twice at 
full resolution, while another 25% displayed once at full resolution 
and once using our imperceptible simplification.  For the 
remaining trials, one was presented at full resolution and the other 
was presented at a reduced resolution computed using 
“imperceptible” simplification for a random viewing distance. 

Objects were displayed for 1 second and separated by 500 
milliseconds, with a neutral grey background before, after, and 
between scenes. When the second object finished displaying, the 
subject pressed a key to indicate whether they thought the models 
differed. To avoid subject fatigue, the next trial did not begin until 
500 milliseconds after the subject had pressed a key.  

After a practice session of 20 trials, each subject performed 200 
trials in a continuous session.  Subjects viewed 3 models (bunny, 
horse, rhino) from 40 random viewpoints for each viewing distance 
used by the simplification algorithm.  Viewing parameters were 

chosen so that the subject viewed the object at randomly 
distributed orientations from randomly distributed directions.  
Object size was randomly chosen such that the visual angle 
subtended by the object was uniformly distributed from 5° to 60°.  
The screen occupied approximately 46° of the subject’s field of 
view, so that in some views the object filled most of the screen.  
When adjusting viewing distance, the value was chosen from 1-
50  times the actual distance of the viewer from the screen.  We 
picked these values to span the range between clearly perceptible 
and completely imperceptible simplification. 

Each subject reported normal eyesight, some with corrective 
lenses.  Subject accuracy is plotted against distance δ.  Baseline 
represents the willingness of subjects to report a difference 
between the models when none existed.  As the graph shows, our 
system does produce imperceptible simplification: at the correct 
viewing distance (25 inches), subject accuracy, defined as ability 
to perceive simplification, is no better than baseline.   

7 Previous Work 

7.1 Perceptually Based Offline Rendering  
Many researchers have worked on perceptually based rendering 
algorithms; Bolin and Meyer [3] and Ramasubramanian et al [23] 
provide nice surveys of the field.  These algorithms take 
advantage of the limitations of human vision to avoid rendering 
computation where the result will be imperceptible.  Unlike our 
work, which seeks to accelerate interactive rendering, almost all 
previous perceptually based rendering approaches have addressed 
realistic offline rendering approaches such as ray and path 
tracing.  Since image creation times in such approaches are 
typically measured in seconds or minutes, these algorithms are 
able to use very sophisticated perceptual models. 

The state of the art in perceptually guided realistic rendering is 
well exemplified by the perceptually based physical error metric 
of Ramasubramanian et al [23].  Their perceptual model 
combines threshold sensitivity for varying illumination, contrast 
sensitivity with multi-scale spatial frequency sensitivity, and 
visual masking to predict the maximum imperceptible change in 
luminance at a given pixel in the rendered image.  This advanced 
model, which incorporates the latest advances in our 
understanding of the visual system, is costly to evaluate by 
interactive rendering terms.  Despite a novel framework that does 
not require reevaluation at every stage of the progressive 
illumination computation, the authors report that evaluating the 
model for a 512x512 image required about 12 seconds on a 400 
MHz CPU. 

7.2 Perceptually Based LOD Selection 
Comparatively few systems have attempted to guide interactive 
rendering with explicit perceptual metrics.  Funkhouser and 
Sequin’s system for dynamic LOD selection uses a cost-benefit 
estimate to pick the best levels of detail within a specified time 
budget [10].  LOD benefit is assigned heuristically, based 
primarily on an object’s screen-space size.  Their system also 
takes into account eccentricity and velocity, the speed at which 
the image of an object moves across the retina.  Lacking eye or 
head tracking, the user’s gaze is assumed to lie in the center of the 
screen; lacking accurate perceptual models, the effects of velocity 
and eccentricity are controlled with sliders set by the user.  
Though the use of these factors is ad hoc, this important work 

Perceiving Simplification: Subject Accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800
Distance from the screen (inches) for 
which simplification was computed

Pe
rc

en
t n

ot
ed

 a
s 

di
ffe

re
nt

Simplified Baseline



 

9 

introduced the notion of perceptually guided metrics to drive LOD 
selection.   

Ohshima et al described a system for gaze-directed stereoscopic 
rendering [21].  Although the paper mentions an eye-tracking 
system in progress, the results were gathered using head-tracked 
viewing direction to approximate gaze direction.  Their system 
uses eccentricity, velocity, and convergence to guide selection of 
precomputed LODs.  The equations used to model the three 
perceptual effects, and the method for combining all three effects 
to choose an LOD, appear to have been determined empirically.  
Thus their algorithm, while clearly demonstrating the potential of a 
gaze-directed approach, still employs a fundamentally heuristic 
model of the visual system. 

Reddy was the first to attempt an LOD selection system guided 
throughout by a principled perceptual model [24].  Using images 
rendered from multiple viewpoints, Reddy analyzes the frequency 
content of objects and their LODs.  A model of the visual acuity, 
defined as highest perceptible spatial frequency, guides LOD 
selection.  If a high-resolution and a low-resolution LOD differ 
only at frequencies beyond the visual acuity of the viewer, those 
differences are imperceptible and the low-resolution LOD may be 
used.  Reddy analyzes the frequency content of LODs, rendering 
each from several directions, and models the decrease in visual 
acuity with eccentricity and velocity to decide which LOD to use. 

8 Summary And Discussion 
Perceptually guided interactive rendering is a broad and difficult 
topic.  Our system shows the feasibility and potential of 
imperceptible view-dependent simplification, but many avenues 
for further research remain.  Below we summarize our contribution 
and results, and address what we see as the most pressing and 
interesting directions for future work. 

8.1 Summary  
We have demonstrated a novel approach to accelerating interactive 
rendering that is directly driven by perceptual criteria.  Our 
principle contribution is a practical framework for perceptually 
guided interactive rendering that equates local simplification 
operations to worst-case contrast gratings whose perceptibility we 
can evaluate.  We have shown an application of the framework to 
the QSplat point-rendering system, and demonstrated it in depth in 
the context of view-dependent polygonal simplification.  Our 
approach addresses several interesting problems, including 
silhouette preservation and imperceptible simplification.  An 
optional gaze-directed component uses eye tracking to obtain 
further simplification by reducing fidelity in the viewer’s 
peripheral vision. 

8.2 Improving the Current System 
We see several opportunities to improve the current system.  
Incorporating dynamic lighting into the contrast calculation is an 
obvious extension.  The difficulty lies in determining the possible 
range of intensities across the original surface without having to 
render that surface.  Since lighting calculations depend on the 
surface normal, we might use the current normal masks, which 
bound the space of normals subtended by each node’s region of 
support, to compute the minimum and maximum intensities of that 
region under the given lighting conditions.  Accounting for non-

directional light sources complicates the problem, but a solution 
certainly appears feasible. 

Our estimate of the spatial frequency induced by a fold is overly 
conservative. We currently treat the worst case by assuming the 
entire screenspace extent of the node changes; the resulting 
spatial frequency bounds the minimum frequency change 
induced.  In practice, however, the actual frequencies affected by 
a fold are typically higher (and hence less perceptible) than this 
worst-case estimate.  A tighter estimate of spatial frequency 
would, we suspect, greatly improve the amount of simplification 
possible at a given contrast.  For example, we currently use 
spheres to bound each node's region of support, which can 
overestimate the change caused by folding.  A more direct 
measure of surface distortion, such as those used by Hoppe [12] 
or Cohen [7], might allow considerably more aggressive 
imperceptible simplification. 

8.3 Extending the Perceptual Model 
Like other perceptually based rendering algorithms to date (e.g., 
that of Ramasubramanian [23]), we base our decisions on the 
viewer’s ability to perceive static stimuli.  In animated or 
interactive rendering, we should also account for temporal 
contrast sensitivity: the ability to see a sudden change or flicker 
when a more gradual change would be invisible.  In practice, our 
algorithms do not introduce visible flicker, but we could 
gaurantee this with a more sophisticated perceptual model that 
accounted for temporal contrast sensitivity.  Such a model could 
prevent folds that would cause a visible “pop”, or regulate a 
transition-softening technique such as alpha blending or Hoppe’s 
geomorphs [12].  Unfortunately, temporal contrast sensitivity is 
less well studied than the static case, and incorporating current 
psychophysical models into our framework seems difficult.  More 
research is needed in this area. 

One significant factor affecting perceptibility of features is 
contrast masking, in which the presence of a high-contrast pattern 
can decrease sensitivity to features at other frequencies.  For 
example, subtle discolorations on a brick wall may be less 
noticeable than on a uniformly colored brick-red wall.  In 
polygonal models high-frequency patterns such as bricks are 
often represented using texture maps, whose frequency 
components could be computed in advance. In future work we 
hope to exploit contrast masking by patterns in texture maps for 
more aggressive simplification. 

The velocity of a feature across the visual field also affects 
perception of detail.  Consider, for example, a foreground object 
moving rapidly across a static background.  If the user’s eye 
tracks the moving object, the background will have high velocity 
and be simplified more aggressively.  However, if the user’s gaze 
remains fixed on the background, the moving object has high 
velocity and may be simplified.  The perceptibility of moving 
contrast gratings may be related to that of static contrast gratings 
by a scaling function [15], so it should be straightforward to 
incorporate node velocity with respect to gaze into our folding 
criteria.  Experiments by Reddy indicate the potential of using 
eccentricity and velocity together to guide LOD management 
[24], and integrating retinal velocity into our perceptual metrics 
seems an obvious and very promising avenue for future work. 



 

10 

8.4 Applicability of Gaze-Directed Rendering 
Gaze-directed rendering is a powerful concept with some clear 
limitations.  Accurately monitoring the user’s gaze requires 
tracking the eye, but eye tracking is still emerging as a commodity 
technology: some current systems are fast enough, accurate 
enough, robust enough, and posses low enough latency for our 
application, but no existing eye tracker meets all of these needs at 
once.  For example, our current system is quite fast and accurate, 
but restricts the user’s head to a small volume, requires a room 
without sunlight, and involves a short calibration step before use.  

It seems likely that eye-tracking technology will improve, 
eliminating these limitations.  However, even without eye tracking 
gaze-directed rendering may still be a viable option.  When 
allowed free range of head motion, user gaze is almost always 
restricted to ±15º of head direction [1].  We can thus substitute 
head direction for eccentricity in our system simply by subtracting 
a 15º error term.  For multi-screen wide-angle displays, such as 
video wall or CAVE™ systems, head-tracked gaze-directed 
rendering may be a very attractive option.   

Our system could easily handle multiple viewers by calculating the 
eccentricity of a node as the minimum distance to any viewer’s 
gaze direction.  Obviously, multiple viewers can reduce the impact 
of gaze-directed rendering, since viewers might examine different 
parts of the display at once.  Such a scenario increases the demand 
on the eye-tracking system and limits the degree of simplification 
possible.  In a multi-screen wide-angle display scenario, however, 
most of the scene will still be outside any viewer’s fovea and 
therefore still eligible for aggressive simplification.  Even with 
head tracking, which forces a more conservative estimate of 
eccentricity, we suspect that gaze-directed rendering will prove a 
powerful technique for managing rendering complexity in such 
situations. 

9 Acknowledgements 
Many of our models are provided courtesy of the Stanford 3-D 
Scanning Repository.  The authors would like to thank the 
maintainers of the repository for making these excellent models 
public. 

10 References  
[1] Barnes, G. “Vestibulo-ocular function during coordinated head and 

eye movements to acquire visual targets”, Journal of Physiology, 287, 
(1979). 

[2] Barten, Peter.  “The Square-Root Integral (SQRI): A new Metric to 
Describe the Effect of Various Display Parameters on Perceived 
Image Quality”, In Human Vision, Visual Processing, and Digital 
Display, vol. 1077, Proceedings SPIE (1989) 

[3] Bolin, Mark. and G. Meyer. “A Perceptually Based Adaptive 
Sampling Algorithm”, Computer Graphics, Vol. 32 (SIGGRAPH 98). 

[4] Campbell, F. and Gubisch, R. “Optical Quality of the Human Eye”, 
Journal of Pysiology, 186 (1966) 

[5] Campbell, F.W. and Robson, J.G. “An Application of Fourier 
Analysis to the Visibility of Contrast Gratings”, Journal of 
Physiology, 187 (1968) 

[6] Clark, James H.  “Hierarchical Geometric Models for Visible Surface 
Algorithms,” Communications of the ACM, Vol. 19, No 10, pp 547-
554.   

[7] Cohen, J, M. Olano, and D. Manocha.  “Appearance-Preserving 
Simplification,” Computer Graphics, Vol. 32 (SIGGRAPH 98). 

[8] Cosman, M., and R.  Schumacker.  “System Strategies to Optimize 
CIG Image Content”.  Proceedings Image II Conference (Scotsdale, 
Arizona), 1981. 

[9] Ferdwada, James, S. Pattanaik, P. Shirley, and D. Greenberg.  “A 
Model of Visual Masking for Realistic Image Synthesis”, Computer 
Graphics, Vol. 30 (SIGGRAPH 96). 

[10] Funkhouser, Tom, and C. Sequin.  “Adaptive display algorithm for 
interactive frame rates during visualization of complex virtual 
environments”, Computer Graphics, Vol. 27 (SIGGRAPH 93). 

[11] Heckbert, Paul, and M. Garland.  “Survey of Polygonal Surface 
Simplification Algorithms”, SIGGRAPH 97 course notes (1997). 

[12] Hoppe, Hughes.  “View-Dependent Refinement of Progressive 
Meshes”, Computer Graphics, Vol. 31 (SIGGRAPH 97). 

[13] Hutchinson, Thomas E.  “Human-Computer Interaction Using Eye-
Gaze Input”, IEEE Transactions on Systems, Man, and Cybernetics 
Vol 19, No. 6 (Novermber 1989). 

[14] Kelly, D.H. Spatial Frequency Selectivity in the Retina, Vision 
Research, 15 (1975) 

[15] Koenderink, J.J. et al. “Perimetry of contrast detection thresholds of 
moving spatial sine wave patterns”, Journal of the Optical Society of 
America, 68 (1978) 

[16] Lindstrom, P. and Turk, G. “Image-Based Simplification”, To 
appear in ACM Transactions on Graphics. Available as technical 
report GIT-GVU-99-49, Georgia Institute of Technology (1999). 

[17] Lubin, Jeffery.  “A Visual Discrimination Model for Imaging 
System Design and Evaluation”, Vision Models for Target Detection 
and Recognition, E. Peli, ed.  World Scientific (1995). 

[18] Luebke, David, and C. Erikson.  “View-Dependent Simplification of 
Arbitrary Polygonal Environments”, Computer Graphics, Vol. 31 
(SIGGRAPH 97). 

[19] Luebke, David.  “A Developer’s Survey of Polygonal Simplification 
Algorithms”, To appear in IEEE Computer Graphics & Applications 
(March 2001).  Available as technical report CS-99-07, University 
of Virginia. 

[20] Luebke, David.  See http://vdslib.virginia.edu. 
[21] Oshima, Toshikazu, H. Yamammoto, and H. Tamura.  “Gaze-

Directed Adaptive Rendering for Interacting with Virtual Space”, 
Proceedings of VRAIS 96 (1996). 

[22] Puppo, Enrico, and R. Scopigno.  “Simplification, LOD and 
Multiresolution—Principles and Applications”, Eurographics '97 
Tutorial Notes, PS97 TN4 (1997). 

[23] Ramasubramanian, Mahesh, S. Pattanaik, and D. Greenberg.  “A 
Perceptually Based Physical Error Metric for Realistic Image 
Synthesis”, Computer Graphics, Vol. 33 (SIGGRAPH 99). 

[24] Reddy, Martin.  “Perceptually-Modulated Level of Detail for Virtual 
Environments”, Ph.D. thesis, University of Edinburgh, 1997. 

[25] Rovamo, J. and Virsu, V. “An Estimation and Application of the 
Human Cortical Magnification Factor”, Experimental Brain 
Research, 37 (1979) 

[26] Rusinkiewicz, S. and Levoy, M.  “QSplat: A Multiresolution Point 
Rendering System for Large Meshes”, Computer Graphics, Vol. 34 
(SIGGRAPH 2000). 

[27] Savoy, R.L. and McCann, J.J. “Visibility of low-spatial-frequency 
sine-wave targets: Dependence on number of cycles”, Journal of the 
Optical Society of America, 65 (1975) 

[28] Shirman, L., and Abi-Ezzi, S.  “The Cone of Normals Technique for 
Fast Processing of Curved Patches”, Computer Graphics Forum 
(Proc.  Eurographics ‘93) Vol 12, No 3, (1993), pp 261-272. 

[29] Xia, Julie and Amitabh Varshney.  “Dynamic View-Dependent 
Simplification for Polygonal Models”, Visualization 96. 

[30] Zhang, Hansong, and K. Hoff.  “Fast Backface Culling Using 
Normal Masks”, Proceedings of ACM Symposium on Interactive 3D 
Graphics (1997). 


